1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
3 years ago
7

What is the wavelength of a wave whose velocity is 8 m/s and frequency is 2 waves/second?

Physics
1 answer:
Maru [420]3 years ago
3 0

Wavelength = (speed) / (frequency)

Wavelength = (8 m/s) / (2/s)

Can you finish it off from this point ?

You might be interested in
For the circuit shown in the figure(figure 1) find the current through each resistor. Express your answers using two significant
Angelina_Jolie [31]

The current flowing in each resistor of the circuit is 4 A.

<h3>Equivalent resistance of the series resistors</h3>

The equivalent resistance of the series circuit is calculated as follows;

6 Ω and 4 Ω are in series = 10 Ω

5 Ω and 10Ω are in series = 15 Ω

<h3>Effective resistance of the circuit</h3>

\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \\\\R = \frac{R_1R_2}{R_1 + R_2} \\\\R = \frac{10 \times 15}{10 + 15} \\\\R = 6 \ ohms

<h3>Current flowing in the circuit</h3>

V = IR

I = V/R

I = 24/6

I = 4 A

Learn more about resistors in parallel here: brainly.com/question/15121871

8 0
2 years ago
Change the following as indicated in the brackets.<br> 8m (km,cm)​
Jet001 [13]

metres to kilometres = 1/1000

8 m ⇒ 0.008 km

metres to centimetres = × 100

8 m ⇒ 800 cm

5 0
3 years ago
Read 2 more answers
There is a parallel plate capacitor. Both plates are 4x2 cm and are 10 cm apart. The top plate has surface charge density of 10C
liberstina [14]

Answer:

1) The total charge of the top plate is 0.008 C

b) The total charge of the bottom plate is -0.008 C

2) The electric field at the point exactly midway between the plates is 0

3) The electric field between plates is approximately 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates is approximately 1.807 × 10⁻⁷ N

Explanation:

The given parameters of the parallel plate capacitor are;

The dimensions of the plates = 4 × 2 cm

The distance between the plates = 10 cm

The surface charge density of the top plate, σ₁ = 10 C/m²

The surface charge density of the bottom plate, σ₂ = -10 C/m²

The surface area, A = 0.04 m × 0.02 m = 0.0008 m²

1) The total charge of the top plate, Q = σ₁ × A = 0.0008 m² × 10 C/m² = 0.008 C

b) The total charge of the bottom plate, Q = σ₂ × A = 0.0008 m² × -10 C/m² = -0.008 C

2) The electrical field at the point exactly midway between the plates is given as follows;

V_{tot} = V_{q1} + V_{q2}

V_q = \dfrac{k \cdot q}{r}

Therefore, we have;

The distance to the midpoint between the two plates = 10 cm/2 = 5 cm = 0.05 m

V_{tot} =  \dfrac{k \cdot q}{0.05} + \dfrac{k \cdot (-q)}{0.05}  = \dfrac{k \cdot q}{0.05} - \dfrac{k \cdot q}{0.05} = 0

The electric field at the point exactly midway between the plates, V_{tot} = 0

3) The electric field, 'E', between plates is given as follows;

E =\dfrac{\sigma }{\epsilon_0 } = \dfrac{10 \ C/m^2}{8.854 \times 10^{-12} \ C^2/(N\cdot m^2)} \approx 1.1294 \times 10^{12}\ N/C

E ≈ 1.1294 × 10¹² N/C

The electric field between plates, E ≈ 1.1294 × 10¹² N/C

4) The force on an electron in the middle of the two plates

The charge on an electron, e = -1.6 × 10⁻¹⁹ C

The force on an electron in the middle of the two plates, F_e = E × e

∴ F_e = 1.1294 × 10¹² N/C ×  -1.6 × 10⁻¹⁹ C ≈ 1.807 × 10⁻⁷ N

The force on an electron in the middle of the two plates, F_e ≈ 1.807 × 10⁻⁷ N

4 0
3 years ago
An egg is dropped from the top of the band hall. if the band hall is 25 m tall, determine the time it takes the egg to hit the f
Vera_Pavlovna [14]

Answer:

2.26 s

Explanation:

The following data were obtained from the question:

Height (h) = 25 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =..?

The time taken for the egg to hit the floor can be obtained as illustrated below:

h = ½gt²

25 = ½ × 9.8 × t²

25 = 4.9 × t²

Divide both side by 4.9

t² = 25 / 4.9

Take the square root of both side

t = √(25 / 4.9)

t = 2.26 s

Thus, it will take 2.26 s for the egg to hit the floor.

7 0
3 years ago
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
Other questions:
  • A hoop is rolling without slipping along a horizontal surface with a forward speed of 5.50 m/s when it starts up a ramp that mak
    10·1 answer
  • What must be the acceleration of a train in order for it to stop from 12m/s in a distance of 541m?
    13·2 answers
  • What is true about the inertia of two cars, Car A of mass 1,500 kilograms and Car B of mass 2,000 kilograms
    11·2 answers
  • A wire is stretched between two posts. Another wire is stretched between two posts that are four times as far apart. The tension
    9·1 answer
  • A net force xf acts on an object. what does this mean?
    12·1 answer
  • Feces is usually about 40 percent water and 60 percent solid matter. Reducing the water content to 20 percent would most likely
    10·1 answer
  • Hello pick all the right ones
    6·1 answer
  • What is radiation? Explain in your own words.
    10·2 answers
  • Zoe is setting up a track for a toy car. The track has a ramp that is 32° above horizontal. If Zoe wants the car to travel as a
    13·1 answer
  • Amy, standing near a straight road, records the sound of the horn of a car traveling at a constant speed. The recorded frequency
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!