Cytoplasm: gel like environment which allows organelles to move about the cell
Golgi bodies: packages and ships materials out of the cell
Cell membrane: controls what goes in and out of the cell
Chloroplast: makes food for plant cells using sunlight
Lysosome: breaks down waste, food, and worn out cell parts
Mitochondria: breaks down food to release energy for the cell
Nucleus: contains the cell's DNA and is the control center of the cell
Endoplasmic reticulum: transports materials within cell; process lipids
Vacuole: stores water, waste and food
Ribosome: make proteins
Answer: B The speed of the object is equal to zero
Explanation:
Answer:In alpha decay, shown in Fig. 3-3, the nucleus emits a 4He nucleus, an alpha particle. Alpha decay occurs most often in massive nuclei that have too large a proton to neutron ratio. An alpha particle, with its two protons and two neutrons, is a very stable configuration of particles. Alpha radiation reduces the ratio of protons to neutrons in the parent nucleus, bringing it to a more stable configuration. Many nuclei more massive than lead decay by this method.
Consider the example of 210Po decaying by the emission of an alpha particle. The reaction can be written 210Po Æ 206Pb + 4He. This polonium nucleus has 84 protons and 126 neutrons. The ratio of protons to neutrons is Z/N = 84/126, or 0.667. A 206Pb nucleus has 82 protons and 124 neutrons, which gives a ratio of 82/124, or 0.661. This small change in the Z/N ratio is enough to put the nucleus into a more stable state, and as shown in Fig. 3-4, brings the "daughter" nucleus (decay product) into the region of stable nuclei in the Chart of the Nuclides.
In alpha decay, the atomic number changes, so the original (or parent) atoms and the decay-product (or daughter) atoms are different elements and therefore have different chemical properties.
Upper end of the Chart of the Nuclides
In the alpha decay of a nucleus, the change in binding energy appears as the kinetic energy of the alpha particle and the daughter nucleus. Because this energy must be shared between these two particles, and because the alpha particle and daughter nucleus must have equal and opposite momenta, the emitted alpha particle and recoiling nucleus will each have a well-defined energy after the decay. Because of its smaller mass, most of the kinetic energy goes to the alpha particle.