Answer:
b. equal to the specific entropy of the gas at the inlet.
Explanation:
Isentropic process is the process in which the entropy of the system remains unchanged. The word isentropic is formed from the combination of the prefix "iso" which means "equal" and the word entropy.
If a process is completely reversible, without the need to provide energy in the form of heat, then the process is isentropic.
Answer:
Side effects - sudden loss of balance/ repeated falls
Outputs - sever sickness and could me factual
Inputs/corrections of this- medications and experimental treatments to help slow the process of deterioration
Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer:
2.379m
Explanation:
The width = 23m
The depth = 3m
The radius is denoted as R
The wetted area is = A
The perimeter perimeter = P
Hydraulic radius
R = A/P
The area of a rectangular channel
= Width multiplied by Depth
A = 23x3
A = 69m²
Perimeter = (2x3)+23
P = 6+23
P= 29
Hydraulic radius R = 69/29
= 2.379m
This answers the question
Thank you!