Answer is 54 °C.
<em>Explanation;</em>
We can simply use heat equation
Q = mcΔT
Where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Let's assume that the initial temperature is T.
Q = 5.53 × 10⁵ J
m = 2850 g
c = 4.186 J/g °C
ΔT = (100 - T) °C <em>Since the water is boiling, the final temperature is 100 °C.</em>
By applying the equation,
5.53 × 10⁵ J = 2850 g x 4.186 J/g °C x (100 - T) °C
(100 - T) °C = 5.53 × 10⁵ J / (2850 g x 4.186 J/g °C )
(100 - T) °C = 46.35 °C
T = 100 - 46.35 C = 53.65 °C
≈ 54 °C
Answer:
Every atom has no overall charge (neutral). This is because they contain equal numbers of positive protons and negative electrons. These opposite charges cancel each other out making the atom neutral.
Explanation:
A. When the substance is in its gaseous state.
<u>Explanation:</u>
When a substance is expanding against its constant volume and pressure, its temperature increases except when the substance is in gaseous state and not in liquid or solid state. So the internal energy increase in the system not only increases and maintaining the volume and pressure of the system remains constant in its gaseous phase. In the first law of Thermodynamics, it is used specifically that to especially in the case of gaseous system.
<u></u>
It is important because if the sample size is smaller, outliers could skew the data more than if it was large.