25 sugar because the mass should be equal on both sides
Answer:
mixture of atoms forms molecule
<h3>
Answer:</h3>
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
<h3>
Explanation:</h3>
We are given the Equation;
CaCl₂ + Na₃PO₄→ Ca₃(PO₄)₂ + NaCl
Assuming the question requires us to balance the equation;
- A balanced chemical equation is one that has equal number of atoms of each element on both sides of the equation.
- Balancing chemical equations ensures that they obey the law of conservation of mass in chemical equations.
- According to the law of conservation of mass in chemical equation, the mass of the reactants should always be equal to the mass of the products.
- Balancing chemical equations involves putting appropriate coefficients on the reactants and products.
In this case;
- To balance the equation we are going to put the coefficients 3, 2, 1, and 6.
- Therefore; the balanced equation will be;
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
Answer:
Radiation
Explanation:
A sun transfers energy by radiation. However, there are three different modes of heat energy transfer -
a) Radiation
b) Conduction
c) Convection
Since sun is a at a very far distance from earth, it cannot transfer its heat energy by conduction as for this mode of heat transfer two bodies need to be in touch with each other.
For convection mode of heat transfer a medium is required but for transfer of sun's energy (which is electromagnetic radiation) no medium is required.
Hence, Sun will transfer energy by radiation only.
Hope This Helps!!! <3
Answer:
Is better use the Benedict's test by the increase in the amount of the products if the enzyme is a reductase
Explanation:
The Benedict's test works by the reaction of the reducing sugars with the ion cupric of the reactive. If the enzyme is a reductase (degrades polysaccharides into bi o monosaccharides), it should cut the polysaccharide bond and the products would react with the Benedict's cupric ion
I hope you undestand me