Answer:
1. 3 m
2. 27 s
Explanation:
1. "A car traveling at +33 m/s sees a red light and has to stop. If the driver can accelerate at -5.5 m/s², how far does it travel?"
Given:
v₀ = 33 m/s
v = 0 m/s
a = -5.5 m/s²
Unknown: Δx
To determine the equation you need, look for which variable you don't have and aren't solving for. In this case, we aren't given time and aren't solving for time. So look for an equation that doesn't have t in it.
Equation: v² = v₀² + 2aΔx
Substitute and solve:
(0 m/s)² = (33 m/s)² + 2(-5.5 m/s²) Δx
Δx = 3 m
2. "A plane starting from rest at one end of a runway accelerates at 4.8 m/s² for 1800 m. How long did it take to accelerate?"
Given:
v₀ = 0 m/s
a = 4.8 m/s²
Δx = 1800 m
Unknown: t
Equation: Δx = v₀ t + ½ a t²
Substitute and solve:
1800 m = (0 m/s) t + ½ (4.8 m/s²) t²
t ≈ 27 s
Answer:
I am not sure about the answer as I don't have a proper calculator besides me now
Explanation:
but I used this equation:
(8.20)sin30(1-d)=10d
Idk whether it is correct or not, I'm just a student too
what is your method of doing this question?
Answer:
C
Explanation:
only if there is a net force of zero, the body will not move
some people may say B but that is wrong because maybe one force is greater than the other so the object would still move even though the forces are in opposite directions and parallel
<h2>Question</h2>
why freezer is made in the upper part of refrigrator
<h2>✒ Answer</h2>
the cold air produced from it is denser than the warmer air in the bottom
<h3>Explaination</h3>
Freezer is normally provided at the top of the refrigerator, because density of the cold air is high compared to the hot air. In a refrigerator the air contacts with the cooling coil and gets cooling.Because of the high density the cold air gets down and the warm air/hot air moves upward and gets cooling from the cooling coil/evaporator coil. This process is repeated. If the Freezer is provided at the bottom place of the refrigerator, the cold air can't to move full area of the refrigerator. So the freezer is normally provided at the top at the refrigerator