E=F*d/2 = k*d * d/2 =>
d^2= 2*E/k
d= sqrt(2*E/k)=sqrt(2*1J/1000N/m)=sqrt(20m^2)/100=0.045 m = 45 mm
Answer:
1.343 atm
Explanation:
The mass of water above 1 square meter of swimming pool bottom is ...
M = (3.5 m)·(1000 kg/m^3) = 3500 kg/m^2
Then the force exerted by the water on the pool bottom is ...
F = Mg = (3500 kg/m^2)(9.8 m/s^2) = 34300 N/m^2 = 34300 Pa
Compared with atmospheric pressure, this is ...
34,300/10^5 = 0.343 . . . . atmospheres
Added to the atmospheric pressure on the water's surface, the total pressure on the pool bottom is 1.343 atmospheres.
The Ampere (A). You could literally google to be more efficient, all the same to me tho
Answer:

Explanation:
Acceleration can be found by dividing the change in velocity by the time.

where Vf is the final velocity, Vi is the initial velocity, and t is the time.
Since the car came to a complete stop, it's final velocity was 0 meters per second.
The initial velocity was 22 meters per second.
The time was 2.0 seconds.

Substitute the values into the formula.

Subtract in the numerator first.

Divide.

The acceleration of the car was -11 meters per square second. The negative acceleration indicates slowing down/stopping.