1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
7

On a cello, the string with the largest linear density (1.58 10-2 kg/m) is the C string. This string produces a fundamental freq

uency of 65.4 Hz and has a length of 0.805 m between the two fixed ends. Find the tension in the string.
Physics
1 answer:
Veseljchak [2.6K]3 years ago
7 0

Answer:

F=175.2N

Explanation:

The relationship of between fundamental frequency, density of the string, length and tension of the string is:

L=\frac{1}{2f} \sqrt{\frac{F}{\frac{L}{m} } }

where L/m is the linear density.

make F the subject of the formula

F=4L^{2}f^{2}  \frac{L}{m}

substitute the values

F=4*0.805^{2} *65.4^{2} *(1.58*10^{-2} )\\F=175.2N

You might be interested in
What’s contact force ?
kodGreya [7K]

Explanation:

Contact force is any force that requires contact.  An object that exerts a force on another object by touching it is exerting a contact force.  Examples of contact force are friction and normal force.

Examples of a non-contact force are gravity and magnetism.

5 0
2 years ago
Read 2 more answers
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
kramer

Explanation:

The gravitational force equation is the following:

F_G = G * \frac{m_1 m_2}{r^2} \\

Where:

G = Gravitational constant = 6.67408 * 10^{-11} m^3 kg^{-1} s^{-2}

m1 & m2 = the mass of two related objects

r = distance between the two related objects

The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.

8 0
3 years ago
How did Galileo increase public support for Copernicus’s model?
miskamm [114]
I think by using data collected by Tycho Brahe
8 0
3 years ago
Read 2 more answers
Do magnets have to touch each other in order to experience a magnetic force
romanna [79]
No they do not they just need to be in each other's magnetic field
8 0
3 years ago
Read 2 more answers
Other questions:
  • You use an inclined plane to move furniture into a truck. You perform 352 kj of work, but only do 229 kj of useful work. What is
    8·2 answers
  • The thermal conductivity of a cement is 0.168 British thermal units per foot hour degree Fahrenheit ​[BTU divided by (ft h Super
    15·1 answer
  • The following steps occur in rods when they are excited by photons of light. What is the proper sequence for these steps? 1. Mem
    6·1 answer
  • Predict the number of valence electrons for each element based on its location in the periodic table of elements.
    10·1 answer
  • Which of the following describes work?
    5·2 answers
  • Does anyone understand circuits?
    7·1 answer
  • What is the most problem of any defective tools?​
    6·1 answer
  • What question that should guide Christians in making ethical decisions?
    8·1 answer
  • Iron cutting scissors have short edges whereas cloth cutting scissors have long edges why​
    9·1 answer
  • A child weighing 200 N is being held back in a swing by a horizontal force of 125 N, as shown in the image. What is the tension
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!