The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

the specific heat capacity

the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is

and the amount of heat supplied is

, so if we re-arrange the previous formula we find the increase in temperature of the water:
Answer is
9.773m/s^2
-----------------------------------------------------------------------------
Given,
h=8848m
The value of sea level is 9.08m/s^2. So, Let g′ be the acceleration due to the gravity on Mount Everest.
g′=g(1 − 2h/h)
=9.8(1 - 6400000/17696)
=9.8(1 − 0.00276)
9.8×0.99724
=9.773m/s^2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s^2
-----------------------------------------------------------------------
hope this helps :)
Underhand serve is a type of volleyball serve in which a player holds the ball with one hand and swings the other hand in an arc motion, striking under the ball with a fist to put it into play. An underhand serve is the most common serve for beginners.
Answer:
The value is 
Explanation:
From the question we are told that
The operating temperature is 
The emissivity is 
The power rating is 
Generally the area is mathematically represented as

Where
is the Stefan Boltzmann constant with value

So


Work= Force x Distance
Answer: 7500 Joules