SiO2 is the only possible choice because the other formulas contain metals. how do we know this? because the other formulas contain elements located on the left of the “staircase” on the periodic table that separates metals from non-metals.
In an ideal gas, there are no attractive forces between the gas molecules, and there is no rotation or vibration within the molecules. The kinetic energy of the translational motion of an ideal gas depends on its temperature. The formula for the kinetic energy of a gas defines the average kinetic energy per molecule. The kinetic energy is measured in Joules (J), and the temperature is measured in Kelvin (K).
K = average kinetic energy per molecule of gas (J)
kB = Boltzmann's constant ()
T = temperature (k)
Kinetic Energy of Gas Formula Questions:
1) Standard Temperature is defined to be . What is the average translational kinetic energy of a single molecule of an ideal gas at Standard Temperature?
Answer: The average translational kinetic energy of a molecule of an ideal gas can be found using the formula:
The average translational kinetic energy of a single molecule of an ideal gas is (Joules).
2) One mole (mol) of any substance consists of molecules (Avogadro's number). What is the translational kinetic energy of of an ideal gas at ?
Answer: The translational kinetic energy of of an ideal gas can be found by multiplying the formula for the average translational kinetic energy by the number of molecules in the sample. The number of molecules is times Avogadro's number:
Answer: No charge (0)
Explanation:
The atom has a proton of 22 and electron number of 19. This means the element has lost 3 electrons. Therefore, the net charge is +3.
So, if this atom gains 3 more electrons, the net charge would be zero (neutral).
The total number of electron would now be 22 which is the same as the proton number.
This implies the atom is now in an unreacted state or ground state.
Answer is: [COCl₂] > [CO][Cl₂]
Chemical reaction: COCl₂(g) ⇄ CO(g) + Cl₂(g); Keq = 8.1 x 10⁻⁴.
Keq = [CO] · [Cl₂] / [COCl₂]; equilibrrium constant of chemical reaction.
[CO] · [Cl₂] / [COCl₂] = 0,00081.
Equilibrium product concentration is much more less than equilibrium concentration of reactant.