1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
3 years ago
6

Which chemical symbol represents an element?

Chemistry
2 answers:
stellarik [79]3 years ago
4 0
CO because it is the chemical symbol for the element cobalt whereas the rest are compound. H20 is water, CO2 is carbon dioxide and N2 is dinitrogen.
emmasim [6.3K]3 years ago
3 0

Answer: N_2

Explanation:

Element is a pure substance which is composed of atoms of similar elements.

It can not be decomposed into simpler constituents using chemical reactions.Example: Nitrogen (N_2)

Compound is a pure substance which is made from atoms of different elements combined together in a fixed ratio by mass.

It can be decomposed into simpler constituents using chemical reactions. Example: carbon dioxide (CO_2) , water (H_2O), carbon monoxide (CO)

You might be interested in
If 9.8g water is used in electrolysis, what is the percent yield if 5.6g of oxygen was
ANEK [815]

Answer:

Approximately 64\%.

Explanation:

\displaystyle \text{Percentage Yield} = \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%

The actual yield of \rm O_2 was given. The theoretical yield needs to be calculated from the quantity of the reactant.

Balance the equation for the hydrolysis of water:

\rm 2\, H_2O \, (l) \to 2\, H_2\, (g) + O_2\, (g).

Note the ratio between the coefficient of \rm H_2O\, (g) and \rm O_2\, (g):

\displaystyle \frac{n(\mathrm{O_2\, (g)})}{n(\mathrm{H_2O\, (aq)})} = \frac{1}{2}.

This ratio will be useful for finding the theoretical yield of \rm O_2\, (g).

Look up the relative atomic mass of hydrogen and oxygen on a modern periodic table.

  • \rm H: 1.008.
  • \rm O: 15.999.

Calculate the formula mass of \rm H_2O and \rm O_2:

M(\mathrm{H_2O}) =2\times 1.008 + 15.999 = 18.015\; \rm g \cdot mol^{-1}.

M(\mathrm{O_2}) =2\times 15.999 = 31.998\; \rm g \cdot mol^{-1}.

Calculate the number of moles of molecules in 9.8\; \rm g of \rm H_2O:

\displaystyle n(\mathrm{H_2O}) = \frac{m(\mathrm{H_2O})}{M(\mathrm{H_2O})} = \frac{9.8\; \rm g}{18.015\; \rm g \cdot mol^{-1}} \approx 0.543991\;\rm g \cdot mol^{-1}.

Make use of the ratio \displaystyle \frac{n(\mathrm{O_2\, (g)})}{n(\mathrm{H_2O\, (aq)})} = \frac{1}{2} to find the theoretical yield of \rm O_2 (in terms of number of moles of molecules.)

\begin{aligned} n(\mathrm{O_2}) &= \displaystyle \frac{n(\mathrm{O_2\, (g)})}{n(\mathrm{H_2O\, (aq)})}  \cdot n(\mathrm{H_2O}) \\ &\approx \frac{1}{2} \times 0.543991\; \rm mol \approx 0.271996\; \rm mol \end{aligned}.

Calculate the mass of that approximately 0.271996\; \rm mol of \rm O_2 (theoretical yield.)

\begin{aligned}m(\mathrm{O_2}) &= n(\mathrm{O_2}) \cdot M(\mathrm{O_2}) \\ &\approx 0.271996\; \rm mol \times 31.998\; \rm g \cdot mol^{-1} \approx 8.70331 \; \rm g \end{aligned}.

That would correspond to the theoretical yield of \rm O_2 (in term of the mass of the product.)

Given that the actual yield is 5.6\; \rm g, calculate the percentage yield:

\begin{aligned}\text{Percentage Yield} &= \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\% \\ &\approx \frac{5.6\; \rm g}{8.70331\; \rm g} \times 100\% \approx 64\%\end{aligned}.

4 0
3 years ago
One method for determining the amount of corn in early Native American diets is the stable isotope ratio analysis (SIRA) techniq
frozen [14]

Answer:

a. i. 8.447 × 10⁻³ T ii.  27.14 cm

b. i. 2.14 cm ii. It is easily detectable.

Explanation:

a.

i. What strength of magnetic field is required?

Since the magnetic force F = Bqv equals the centripetal force F' = mv²/r on the C12 charge, we have

F = F'

Bqv = mv²/r

B = mv/re where B = strength of magnetic field, m = mass of C12 isotope = 1.99 × 10⁻²⁶ kg, v = speed of C 12 isotope = 8.50 km/s = 8.50 × 10³ m/s, q = charge on C 12 isotope = e = electron charge = 1.602 × 10⁻¹⁹ C (since the isotope loses one electron)and r = radius of semicircle = 25.0 cm/2 = 12.5 cm = 12.5 × 10⁻² m

So,

B = mv/rq

B = 1.99 × 10⁻²⁶ kg × 8.50 × 10³ m/s ÷ (12.5 × 10⁻² m × 1.602 × 10⁻¹⁹ C)

B = 16.915 × 10⁻²³ kgm/s ÷ (20.025 × 10⁻²¹ mC)

B = 0.8447 × 10⁻² kg/sC)

B = 8.447 × 10⁻³ T

(ii) What is the diameter of the 13C semicircle?

Since the magnetic force F = Bq'v equals the centripetal force F' = mv²/r' on the C13 charge, we have

F = F'

Bq'v = mv²/r'

r' = mv/Be where r = radius of semicircle, B = strength of magnetic field = 8.447 × 10⁻³ T, m = mass of C12 isotope = 2.16 × 10⁻²⁶ kg, v = speed of C 12 isotope = 8.50 km/s = 8.50 × 10³ m/s, q' = charge on C 13 isotope = e = electron charge = 1.602 × 10⁻¹⁹ C (since the isotope loses one electron) and  = d/2 = 12.5 cm = 12.5 × 10⁻² m

So, r' = mv/Be

r' = 2.16 × 10⁻²⁶ kg × 8.50 × 10³ m/s ÷ (8.447 × 10⁻³ T × 1.602 × 10⁻¹⁹ C)

r' = 18.36 × 10⁻²³ kgm/s ÷ 13.5321 × 10⁻²² TC)

r' = 1.357 × 10⁻¹ kgm/TC)

r' = 0.1357 m

r' = 13.57 cm

Since diameter d' = 2r', d' = 2(13.57 cm) = 27.14 cm

b.

i. What is the separation of the C12 and C13 ions at the detector at the end of the semicircle?

Since the diameter of the C12 isotope is 25.0 cm and that of the C 13 isotope is 27.14 cm, their separation at the end of the semicircle is 27.14 cm - 25.0 cm = 2.14 cm

ii. Is this distance large enough to be easily observed?

This distance of 2.14 cm easily detectable since it is in the centimeter range.

7 0
2 years ago
When bonds between atoms are broken or formed, what is the outcome?
LuckyWell [14K]
Two or more atoms<span> may </span>bond<span> with each other to form a molecule. When two hydrogens and an oxygen share electrons via covalent </span>bonds<span>, a water molecule is formed. Chemical reactions </span>occur<span> when two or more </span>atoms bond<span> together to form molecules or when bonded </span>atoms are broken<span> apart.</span>
8 0
3 years ago
Read 2 more answers
BH+ClO4- is a salt formed from the base B (Kb = 1.00e-4) and perchloric acid. It dissociates into BH+, a weak acid, and ClO4-, w
Len [333]

Answer:

The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>

Explanation:

Given: The base dissociation constant: K_{b} = 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M

Also, water dissociation constant: K_{w} = 1 × 10⁻¹⁴

<em><u>The acid dissociation constant </u></em>(K_{a})<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

K_{a}. K_{b} = K_{w}    

\Rightarrow K_{a} = \frac{K_{w}}{K_{b}}

\Rightarrow K_{a} = \frac{1\times 10^{-14}}{1\times 10^{-4}} = 1\times 10^{-10}

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>

Reaction involved: BH⁺  +  H₂O  ⇌  B  +  H₃O+

Initial:                     0.1 M                    x         x            

Change:                   -x                      +x       +x

Equilibrium:           0.1 - x                    x         x

<u>The acid dissociation constant: </u>K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}

\Rightarrow K_{a} = \frac{x^{2}}{0.1 - x}

\Rightarrow 1\times 10^{-10} = \frac{x^{2}}{0.1 - x}

As, x

\Rightarrow 0.1 - x = 0.1

\therefore 1\times 10^{-10} = \frac{x^{2}}{0.1 }

\Rightarrow x^{2} = (1\times 10^{-10})\times 0.1 = 1\times 10^{-11}

\Rightarrow x = \sqrt{1\times 10^{-11}} = 3.16 \times 10^{-6}

<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>

Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44

<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>

5 0
3 years ago
Which pair of elements would most likely bond to form a covalently bonded compound?
anastassius [24]

Answer:

two nonmetal elements join together to form covalent compounds

3 0
3 years ago
Other questions:
  • When K2SO4 is separated into its ions, how is it written?
    15·2 answers
  • Quais das substâncias abaixo não conduziram a corrente elétrica em solução aquosa
    8·1 answer
  • URGENT PLZ HELP AHHHHHHH
    10·1 answer
  • How does dalton's atomic theory account for the law of mass conservation?
    12·1 answer
  • Which one of the following is not a compound?
    5·2 answers
  • How many electrons are there in the valence shell of the oxygen atom of water? O a. 2 O 6.4 OC.6 O d. 8
    13·1 answer
  • During a dilution, what happens to the concentration of a solution?
    11·2 answers
  • 1.52 moles of gas are at a pressure of 99.5kPa and a temperature of 298K. What is the volume of the gas
    10·1 answer
  • Which element has 5 energy levels and 2 valence electrons?
    11·1 answer
  • Why does 50 g of copper require less heat (q) than 50 g of water, in order to raise the temperature by 15 oC? (Hint - the heat c
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!