1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
4 years ago
10

6.3.9 A coin was tossed n = 1000 times, and the proportion of heads observed was

Engineering
1 answer:
4vir4ik [10]4 years ago
4 0

Answer:

No

Explanation:

51 / 100 = 510 / 1000

Chance of getting a head is 1 / 2 of total throws

= 1 / 2 × 1000

= 500 is the probability

and the number of heads was just 10 more the the probability...if the was a greater gap, there would be evidence to say the coin is unfair

You might be interested in
Air flows at 45m/s through a right angle pipe bend with a constant diameter of 2cm. What is the overall force required to keep t
HACTEHA [7]

Answer:

b)1.08 N

Explanation:

Given that

velocity of air V= 45 m/s

Diameter of pipe = 2 cm

Force exerted by fluid  F

F=\rho AV^2

So force exerted in x-direction

F_x=\rho AV^2

F_x=1.2\times \dfrac{\pi}{4}\times 0.02^2\times 45^2

F=0.763 N

So force exerted in y-direction

F_y=\rho AV^2

F_y=1.2\times \dfrac{\pi}{4}\times 0.02^2\times 45^2

F=0.763 N

So the resultant force R

R=\sqrt{F_x^2+F_y^2}

R=\sqrt{0.763^2+0.763^2}

R=1.079

So the force required to hold the pipe is 1.08 N.

3 0
3 years ago
A turbine operates at steady state, and experiences a heat loss. 1.1 kg/s of water flows through the system. The inlet is mainta
strojnjashka [21]

Answer:

\dot W_{out} = 399.47\,kW

Explanation:

The turbine is modelled after the First Law of Thermodynamics:

-\dot Q_{out} -\dot W_{out} + \dot m\cdot (h_{in}-h_{out}) = 0

The work done by the turbine is:

\dot W_{out} = \dot m \cdot (h_{in}-h_{out})-\dot Q_{out}

The properties of the water are obtained from property tables:

Inlet (Superheated Steam)

P = 10\,MPa

T = 520\,^{\textdegree}C

h = 3425.9\,\frac{kJ}{kg}

Outlet (Superheated Steam)

P = 1\,MPa

T = 280\,^{\textdegree}C

h = 3008.2\,\frac{kJ}{kg}

The work output is:

\dot W_{out} = \left(1.1\,\frac{kg}{s}\right)\cdot \left(3425.9\,\frac{kJ}{kg} -3008.2\,\frac{kJ}{kg}\right) - 60\,kW

\dot W_{out} = 399.47\,kW

5 0
3 years ago
The 10 foot wide circle quarter gate AB is articulated at A. Determine the contact force between the gate and the smooth surface
slamgirl [31]

Answer:

F = 641,771.52 \dfrac{lb-ft}{s^2}

Explanation:

Given that

R=8 ft

Width= 10 ft

We know that hydro statics force given as

  F=ρ g A X

ρ is the density of fluid

A projected area on vertical plane

X is distance of center mass of projected plane from free surface of water.

Here

X=8/2  ⇒X=4 ft

A=8 x 10=80  ft^2

So now putting the values

F=ρ g A X

F=62.4(32.14)(80)(4)

F = 641,771.52 \dfrac{lb-ft}{s^2}

   

4 0
3 years ago
A reservoir is 1 km wide and 10 km long and has an average depth of 100m. Every hour, 0.1% of the reservoir's volume drops throu
Ksju [112]

Answer:

250.7mw

Explanation:

Volume of the reservoir = lwh

Length of reservoir = 10km

Width of reservoir = 1km

Height = 100m

Volume = 10x10³x10³x100

= 10⁹m³

Next we find the volume flow rate

= 0.1/100x10⁹x1/3600

= 277.78m³/s

To get the electrical power output developed by the turbine with 92 percent efficiency

= 0.92x1000x9.81x277.78x100

= 250.7MW

7 0
3 years ago
Air expands through a turbine operating at steady state. At the inlet p1 = 150 lbf/in^2, T1 = 1400R and at the exit p2 = 14.8 lb
Paraphin [41]

Answer:

The power developed in HP is 2702.7hp

Explanation:

Given details.

P1 = 150 lbf/in^2,

T1 = 1400°R

P2 = 14.8 lbf/in^2,

T2 = 700°R

Mass flow rate m1 = m2 = m = 11 lb/s Q = -65000 Btu/h

Using air table to obtain the values for h1 and h2 at T1 and T2

h1 at T1 = 1400°R = 342.9 Btu/h

h2 at T2 = 700°R = 167.6 Btu/h

Using;

Q - W + m(h1) - m(h2) = 0

W = Q - m (h2 -h1)

W = (-65000 Btu/h ) - 11 lb/s (167.6 - 342.9) Btu/h

W = (-65000 Btu/h ) - (-1928.3) Btu/s

W = (-65000 Btu/h ) * {1hr/(60*60)s} - (-1928.3) Btu/s

W = -18.06Btu/s + 1928.3 Btu/s

W = 1910.24Btu/s

Note; Btu/s = 1.4148532hp

W = 2702.7hp

5 0
3 years ago
Other questions:
  • A satellite orbits the Earth every 2 hours at an average distance from the Earth's centre of 8000km. (i) What is the average ang
    7·1 answer
  • Air at 38°C and 97% relative humidity is to be cooled to 14°C and fed into a plant area at a rate of 510m3/min. (a) Calculate th
    11·1 answer
  • A force that attempts to decrease the length of a structural member is____
    14·1 answer
  • The market for college textbooks is illustrated in the graph below. In the market for textbooks, the current price of a textbook
    11·1 answer
  • A long bone is subjected to a torsion test. Assume that the inner diameter is 0.375 in. and the outer diameter is 1.25 in., both
    14·1 answer
  • Using the idea of mass and change of speed... could a bowling ball be thrown so fast that it has the same force as a car driving
    7·1 answer
  • A 40 mph wind is blowing past your house and speeds up as it flows up and over the roof. If the elevation effects are negligible
    14·1 answer
  • What is a rivet and how do tehey work
    14·1 answer
  • A civil engineer is analyzing the compressive strength of concrete. The compressive strength is approximately normal distributed
    7·1 answer
  • 3
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!