Answer:
critical stress required for the propagation is 27.396615 ×
N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×
N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) =
.....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×
m
so now put value in equation 1 we get
( σc ) =
( σc ) =
( σc ) = 27.396615 ×
N/m²
so critical stress required for the propagation is 27.396615 ×
N/m²
Answer:
Carpenter's square
Explanation:
The most common hand tool used to measure or set angles with its application extending to setting angles of roofs and rafters. Another name of a Carpenter's square is a framing square.
Other hand tools that are used to measure angles are;
- The combination square that allows a user to set both 90° and 45° angles
- A Bevel that allows users to set any angle they like.
- A Protractor that resembles a bevel but its marks are marked in an arc.
- An electromagnetic angle finder which gives a reading according to the measure of the arms adjusted by the user.
Answer:
the crown is false densty= 12556kg/m^3[/tex]
Explanation:
Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.
W=mg
W=weight(N)=31.4N
M=Mass
g=gravity=9.81m/S^2
solving for M
m=W/g

The second step is find the volume of crown remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water

Where
F=weight in water=28.9N
m=mass of crown=3.2kg
g=gravity=9.81m/S^2
α=density of water=1000kg/m^3
V= crown´s volume
solving for V

finally, we remember that the density is equal to the index between mass and volume

To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.
1.weigh the crown in the air and find the mass
2. put water in a cylindrical bucket and measure its height with a ruler.
3. Put the crown in the bucket and measure the new water level with a ruler.
4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.
5. find density by dividing mass by volume
Except the Table of Contents