1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anastassius [24]
2 years ago
13

HAPPINESS DISCUSSION

Engineering
2 answers:
RideAnS [48]2 years ago
8 0

Answer:

uh because life sucks o_<

KengaRu [80]2 years ago
7 0
I personally have more bad days then good days because I don’t cherish the good days, on the good days I’m happy that I can feel something like sadness, or anger on my bad days, because without my bad days there would be no good days. But on my bad days I don’t care about anything except for what is making my day bad.
You might be interested in
Pls help me it’s due today
hichkok12 [17]

Answer:

C. 14.55

Explanation:

12 x 10 = 120

120 divded by 10 is 12

so now we do the left side

7 x 3 = 21 divded by 10 is 2

so now we have 14

and the remaning area is 0.55

so 14.55

6 0
2 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
A body weighs 50 N and hangs from a spring with spring constant of 50 N/m. A dashpot is attached to the body. If the body is rai
lbvjy [14]

Answer:

a) 3.607 m

b) 1.5963 m

Explanation:

See that attached pictures for explanation.

3 0
3 years ago
A thick oak wall initially at 25°C is suddenly exposed to gases for which T =800°C and h =20 W/m2.K. Answer the following questi
Schach [20]

Answer:

a) What is the surface temperature, in °C, after 400 s?

   T (0,400 sec) = 800°C

b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s

c) What is the temperature, in °C, 1 mm from the surface after 400 s?

   T (1 mm, 400 sec) = 798.35°C

Explanation:

oak initial Temperature = 25°C = 298 K

oak exposed to gas of temp = 800°C = 1073 K

h = 20 W/m².K

From the book, Oak properties are e=545kg/m³   k=0.19w/m.k   Cp=2385J/kg.k

Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.

From energy balance: \frac{T - T_{\infty}}{T_i - T_{\infty}} = Exp (\frac{-hA}{evCp})t

Initial temperature wall = T_i

Surface temperature = T

Gas exposed temperature = T_{\infty}

6 0
3 years ago
What are the atomic binding force and energy? how do they relate to materials strength and thermal stability.
Elanso [62]

Answer:

As we know that every molecule is attached by a strong force .The force required to disassemble the atoms is know as atomic binding force or we can say that the force required to disassemble the electron from atoms is known as binding force.On the other hand the energy require to doing this is known as atomic binding energy.

If the binding force is high then it will become difficult to disassemble thermally as well as mechanically.So we can say that it have direct relationship with   materials strength and thermal stability.

7 0
3 years ago
Other questions:
  • Estimate the quantity of soil to be excavated from the borrow pit​
    12·1 answer
  • The penalty for littering 15 lb or less is _____.<br> A. $25<br> B. $50<br> C. $100<br> D. $150
    14·1 answer
  • Pipe (2) is supported by a pin at bracket C and by tie rod (1). The structure supports a load P at pin B. Tie rod (1) has a diam
    15·1 answer
  • Which option identifies the step of the implementation phase represented in the following scenario?
    9·2 answers
  • Design drawings use line styles of up to eight different varieties to communicate important information about the item. true or
    7·1 answer
  • Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 b
    11·1 answer
  • What major problems could you encounter in complex intersections?
    7·1 answer
  • What is valve overlap?
    5·1 answer
  • Two technicians are discussing torsion bars. Technician A says that many torsion bars are adjustable to allow for ride height ad
    10·1 answer
  • Which - type of service shop is least likely to provide service to all
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!