Answer:
I'm afraid i can't visualise it to you but visit the site below to help you out <3
Explanation:
https://opendsa-server.cs.vt.edu/embed/mergesortAV
Answer:
375 KPa
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 125 KPa
Initial temperature (T₁) = 300 K
Final temperature (T₂) = 900 K
Final pressure (P₂) =?
The new (i.e final) pressure of the gas can be obtained as follow:
P₁/T₁ = P₂/T₂
125 / 300 = P₂ / 900
Cross multiply
300 × P₂ = 125 × 900
300 × P₂ = 112500
Divide both side by 300
P₂ = 112500 / 300
P₂ = 375 KPa
Thus, the new pressure of the gas is 375 KPa
Answer:
In refrigeration cycle heat transfer from inside refrigeration
In heat pump cycle heat transfer from environment
Explanation:
heat cycle is mechanical process use for cool the temperature but
In refrigeration heat transfer from inside of refrigeration that decrease temperature of refrigerator and in heat pump it decrease temperature negligible as compare to refrigerator
Answer / Explanation:
To proper understand the answers that is given to the question, we need to understand some basic terms that has been used in the question.
Energy: This can be refereed to as the quantitative property that is transferred to an object for the purpose of the object working or to heat up the object. It can also be referred to as conserved quantity that is energy can be converted from one form or state to another but cannot destroyed.
Power: This can be defined as the rate of doing work or transferring heat per unit time from one state to another. The SI Units of power is watt which is equal to one joule per second.
Hence, the formula that links energy and power is:
Energy = Power x Time
Now. referring back to the question (a) asking how much energy do we save if we execute at the current speed and turn off the system when the computation is complete: The answer is = 50%. That is 50% of the energy is saved.
(b) If we recall the formula for calculating energy,
we have:
Energy = 1 /2 Load x V²
Changing the frequency does not affect the energy.However, it affects the power.
So therefore, the new energy is 1 / 2 Load x ( 1/2 V)² ,
reducing it to about 1 /4 of the old energy.