Answer:
Explanation: The strengths of the inter molecular forces varies as follows -
The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Answer:
44
Explanation:
Given that :
Mass of solute = Mass of urea = 16g
Mass of water = 20g
Mass of solution = (mass of solute + mass of solvent) = (mass of urea + mass of water) = (16g + 20g) = 36g
Percentage Mass = (mass of solute / mass of solution) * 100%
Percentage Mass = (16 / 36) * 100%
Percentage Mass = 0.4444444 x 100%
Percentage Mass = 44.44%
Percentage Mass = 44%
carbon dioxide, that is what I found
Answer:
[Kr] 4d10 5s2 5p4
Explanation:
The Symbol I represents Iodine. It has atomic number of 53. The full electronic configuration is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p5
However the question requested for the configuration of I+.
I+ is a cation and it simply refers to an iodine atom that has lost a single electron. The electronic configuration of I+ is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4
Using Noble gas shorthand representation, we have;
[Kr] 4d10 5s2 5p4