The first law of thermodynamics characterises the two types of energy transfer, as heat and as thermodynamic. The final internal (thermal) energy of the system is 1,500 J.
<h3>What is internal energy?</h3>
The energy present in a system itself for conducting reactions is called internal energy.
Given,
- Heat entering system (Q) = 700 J
- Work done by the piston (W) = 400
- Initial energy
= 1200 J
According to the <u>first law of thermodynamics</u>:

Substituting values in the above equation:

Therefore, option D. 1500 J is the final energy.
Learn more about internal energy here:
brainly.com/question/2602565
Increase in Oxygen shift the equilibrium towards reactant side.
<u>Explanation:</u>
6CO₂ + 6H₂O ⇄ C₆H₁₂O₆ + 6O₂
This is the reaction occurs in the photosynthesis of plants by means of sunlight. In this case, if the concentration of Oxygen increases or adding more oxygen to the product side will shift the equilibrium towards the reactant side according to the Le Chatlier's principle, which adjusts the equilibrium by itself for any changes that is increase or decrease in pressure, temperature or concentration of reactants or products.
Answer:
The group given the sugar pills.
Explanation:
The control group is the ones given sugar pills because they did not get the experimental aspirin
Answer:
As an example of the processes depicted in this figure, consider a sample of water. When gaseous water is cooled sufficiently, the attractions between H2O molecules will be capable of holding them together when they come into contact with each other; the gas condenses, forming liquid H2O. For example, liquid water forms on the outside of a cold glass as the water vapor in the air is cooled by the cold glass.
Explanation:
Hopefully that helps!