hydrocarbon ring compound
Answer: W + BgCz2 arrow WCz + Bg
2 W + BgCz2 arrow 2 WCz + Bg
Explanation:
Cz has 2 so you balcne the other side of WCz.
Since you Balcanes the Cz you changed the W and you Balcanes the other W on the left side.
B. As particles travel in straight lines, their paths sometimes meet, and then they bounce apart with no gain or loss of energy.
Explanation:
The best statement that describes the collision of gas particles according to the kinetic-molecular theory is that as particles travel in straight lines, their paths sometimes meet and then they bounce apart with no gain or loss of energy.
- The kinetic molecular theory is used to explain the forces between molecules and their energy.
One of the postulate suggests that, when molecules collide with each other, or with the wall of the container, there is no loss or gain of energy.
- Molecules are independent of one another and that forces of attraction and repulsion between molecules are negligible.
Learn more:
Particle collision brainly.com/question/6439920
#learnwithBrainly
Answer:
The answer to your question is V2 = 66.7 ml
Explanation:
Data
Volume 1 = V1 = 400 ml
Pressure 1 = P1 = 1 atm
Volume 2 = V2 = ?
Pressure 2 = P2 = 6 atm
Process
1.- To solve this problem use Boyle's law
P1V1 = P2V2
-solve for V2
V2 = P1V1 / P2
-Substitution
V2 = (1)(400) / 6
-Simplification
V2 = 400 / 6
-Result
V2 = 66.7 ml
Answer:
11.6g of NH₃(g) have to react
Explanation:
For the reaction:
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH = -905kJ
<em>4 moles of ammonia produce 905kJ</em>
Thus, if you want to produce 154kJ of energy you need:
154kJ × (4 mol NH₃ / 905kJ) = <em>0.681moles of NH₃. </em>In mass -Molar mass ammonia is 17.031g/mol-
0.681mol NH₃ × (17.031g / mol) = <em>11.6g of NH₃(g) have to react</em>