1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
8

Questions 3-6 refer to rhe solutions below:

Chemistry
1 answer:
Yanka [14]3 years ago
7 0

Under room temperature where \text{pK}_w = 14:

3.) (A), (B), and (E).

4.) (D).

5.) (B).

<h3>Explanation</h3>

What makes a buffer solution? For a solution to be a buffer, it needs to contain large amounts of a weak acid and its conjugate base ion. Alternatively, the solution may contain large amounts of a weak base and its conjugate acid ion.  

Not every one of the five solutions is a buffer solution.

<h3>(A)</h3>

Ethanoic acid CH₃COOH (a.k.a. acetic acid) is a weak acid. pKa = 4.756. CH₃COONa is a salt. It dissolves to produce CH₃COO⁻, which is the conjugate base ion of CH₃COOH. The solution in (A) contains equal number of CH₃COOH and CH₃COO⁻, both at 1.0 M.

Refer to the Henderson-Hasselbalch equation for buffers of weak acids.

\displaystyle \text{pH} = \text{pK}_a + \log{\frac{[\text{Conjugate Ion}]}{[\text{Weak Acid}]}}.

\displaystyle \log{\frac{[\text{Conjugate Ion}]}{[\text{Weak Acid}]}} =\ln{1} = 0.

The pH of the solution in (A) will be the same as the pKa of CH₃COOH. pH = 4.746.

<h3>(B)</h3>

Consider the hydrogen halides:

  • HF: weak acid.
  • HCl: strong acid.
  • HBr: strong acid.

The radius of halogen atoms increases down the group, and hydrogen-halogen bond becomes weaker. It becomes easier for water to break those bonds. As a result, the strength of hydrogen halides increases down the group. HF is the only weak acid among the common hydrogen halides.

Mixing HBr and KBr at equal ratio will be similar to mixing HCl and KCl at the same ratio. All HBr in the solution breaks down into H⁺ and Br⁻. The pH of the solution will depend only on the concentration of HBr.

\displaystyle [\text{H}^{+}] = [\text{HBr}] \\\phantom{[\text{H}^{+}]}= \frac{n}{V} \\\phantom{[\text{H}^{+}]}= \frac{c(\text{HBr})\cdot V(\text{HBr})}{V(\text{HBr})+V(\text{KBr})}\\\phantom{[\text{H}^{+}]}=\frac{0.100\;\text{L}\times 1.0\;\text{mol}\cdot\text{L}^{-1}}{0.100\;\text{L}+0.100\;\text{L}} \\\phantom{[\text{H}^{+}]}= 0.50\;\text{mol}\cdot\text{L}^{-1}.

\text{pH} = -\log{[\text{H}^{+}] = -\log{0.50} \approx {\bf 0.30}.

<h3>(C)</h3>

Similarly to HCl and HBr, HI is also a strong acid. Mixing HI and NaOH at equal ratio will produce a solution of NaI, which is similar to NaCl. The final solution will be neutral. pH = 7 if pKw = 14.

<h3>(D)</h3>

NH₃ is a weak base. NH₄Cl dissolves completely to produce NH₄⁺ and Cl⁻. NH₄⁺ is the conjugate acid of NH₃. The final solution will contain an equal number of NH₃ and NH₄⁺. pKb = 4.75 for ammonia NH₃.

Apply the Henderson-Hasselbalch equation for buffers of weak bases:

\displaystyle \textbf{pOH} = \text{pK}_b + \log{\frac{[\text{Conjugate Ion}]}{[\text{Weak Base}]}}= 4.75 + \log{1} = 4.75.

Note that what this equation gives for buffers of weak bases is the pOH of the solution. pH = pKw - pOH. Assume that pKw = 14. pH = 14 - 4.75 = 9.25.

<h3>(E)</h3>

The solution in (E) will contain about 1.0 M of CH₃COOH. The volume of the solution will be 200 mL.

n(\text{CH}_3\text{COO}^{-}) = n(\text{NaOH}] = c\cdot V = 0.10\;\text{mol}.

\displaystyle [\text{CH}_3\text{COO}^{-}] = \frac{n}{V} = {0.10}{0.10 + 0.10} = 0.50 \;\text{mol}\cdot\text{L}^{-1}.

There's nearly no conjugate base of CH₃COOH. As a result, the solution will not be a buffer, and the Henderson-Hasselbalch Equation will not apply. Refer to an ICE table:

\begin{array}{c|ccccccc}\text{R}&\text{CH}_3\text{COO}^{-} &+&\text{H}_2\text{O}&\rightleftharpoons &\text{CH}_3\text{COOH}&+&\text{OH}^{-}\\\text{I}&0.50\\\text{C}& -x &&&& +x &&+x\\\text{E} &0.50 - x &&&&x&&x\end{array}

The value of pKa is large. Ka will be small. the value of x will be much smaller than 0.50 such that 0.50-x \approx 0.50.

The pKa of a weak acid is the same as pKw divided by the pKb of its conjugate base.

\displaystyle \frac{[\text{CH}_3\text{COOH}]\cdot[\text{OH}^{-}]}{[\text{CH}_3\text{COO}^{-}]} = \text{K}_b(\text{CH}_3\text{COO}^{-}) \\\phantom{\displaystyle \frac{[\text{CH}_3\text{COOH}]\cdot[\text{OH}^{-}]}{[\text{CH}_3\text{COO}^{-}]} }= \frac{\text{K}_w}{\text{K}_a(\text{CH}_3\text{COOH})} \\\phantom{\displaystyle \frac{[\text{CH}_3\text{COOH}]\cdot[\text{OH}^{-}]}{[\text{CH}_3\text{COO}^{-}]}} = \frac{10^{-14}}{1.75\times 10^{-5}} = 5.71\times 10^{-10}.

\displaystyle \frac{x^{2}}{0.50} =5.71\times 10^{-10}.

[\text{OH}^{-}] = x \approx 1.69\times 10^{-5}\;\text{mol}\cdot\text{L}^{-1}.

\text{pH} = \text{pK}_w + \log{[\text{OH}^{-}]} = 9.23.

You might be interested in
Which term names the main class of the chemical that makes up bread.
Shkiper50 [21]

Answer:

yeast

Explanation:

4 0
3 years ago
The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion fo
Anna007 [38]

Answer:

NaCl: ionic, HF: hydrogen bond,  HCl: dipole dipole , F2: dispersion force

Explanation:

complete question is:

The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion forces. Consider the compounds below, and classify each by its predominant attractive or intermolecular force among atoms or molecules of the same type.Identify each of the following ( NaCl, HF, HCl, F2) as Ionic, H Bonding, Dipole or Dispersion.

3 0
2 years ago
Read 2 more answers
Which is the correct Lewis structure for carbon monoxide?
LuckyWell [14K]
<span>The Lewis structure for CO has 10 valence electrons. For the CO Lewis structure you'll need a triple bond between the Carbon and Oxygen atoms in order to satisfy the octets of each atom while still using the 10 valence electrons available for the CO molecule.</span>
7 0
2 years ago
Please Help 8-9!!!!!!!
seropon [69]

The labeled diagram is given in the image attached.

As it can be seen from the image that freezing is when energy is removed from the system at 0 ⁰ while melting is when energy is added at 0⁰.

Also when energy is added at 100⁰C, it causes boiling while when it is removed at 100⁰C, it causes condensation.


Melting point of water is 0⁰C while boiling point is 100⁰C

3 0
2 years ago
What is empirical formula for CLO2<br>​
Natasha2012 [34]

Answer:

chlorine dioxide is empirical formula for CLO2.

3 0
2 years ago
Other questions:
  • A sample of 88.0 g CO2 is held at 291 K in a 40.0 L container. What is the pressure this gas exerts on the container. Express yo
    7·1 answer
  • Summarize the relationship between volume, temperature and pressure (use words like “inversely
    15·1 answer
  • X-rays with a wavelength of 8.82 nm. Calculate the frequency of the x rays
    7·1 answer
  • Diatomic oxygen has a molar mass 16 times that of diatomic hydrogen. The root-mean-square speed vrms for diatomic oxygen at 50∘C
    13·1 answer
  • How much energy is required to completely melt a 250 gram ice cube that is already at 0 degrees Celsius? Show your work &amp; un
    12·1 answer
  • Describe why corrosion is a natural process
    12·1 answer
  • What is filtration? ㅜㅜ ㅜㅜ
    15·1 answer
  • How many molecules are there in 39 grams of water
    6·2 answers
  • HELP! HELP!<br> an element with 5 protons, and 8 electrons has an atomic number of?
    12·1 answer
  • Which choice describes the function of the pancreas gland?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!