Answer:
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another.
Explanation:
This means that a system always has the same amount of energy, unless it's added from the outside.
Electron affinity corresponds to the energy released when an electron is added to<span> a </span>neutral atom in the gas phase<span>.
hope this helps!</span>
Answer:
<h2>1.23 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula
![n = \frac{N}{L} \\](https://tex.z-dn.net/?f=n%20%3D%20%20%5Cfrac%7BN%7D%7BL%7D%20%5C%5C)
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
![n = \frac{6.76 \times {10}^{23} }{6.02 \times {10}^{23} } = \frac{6.76}{6.02} \\ = 1.22923...](https://tex.z-dn.net/?f=n%20%3D%20%20%5Cfrac%7B6.76%20%5Ctimes%20%20%7B10%7D%5E%7B23%7D%20%7D%7B6.02%20%5Ctimes%20%20%7B10%7D%5E%7B23%7D%20%7D%20%20%3D%20%20%5Cfrac%7B6.76%7D%7B6.02%7D%20%20%5C%5C%20%20%3D%201.22923...)
We have the final answer as
<h3>1.23 moles</h3>
Hope this helps you
₉₂U²³⁵ + ₀n¹ → ₅₄Xe¹⁴⁰ + ₃₈Sr⁹⁴ + 2 ₀n¹
Mass of reactants = 235.04393 + 1.008665 = 236.052595 amu
Mass of products = 139.92144 + 93.91523 + 2* (1.008665) = 235.854000 amu
Mass defect Δ m = 236.052595 - 235.854000 = 0.198 amu
Reaction energy released Q = Δ m * 931.5
= 0.198 * 931.5 = 185 MeV
Molar mass of NaHCO3 is 83.9. moles of Na...O3= 5.8/83.9
=0.0691
for every mole of Na..O3 there are 3 O
n(O) = n(NaHCO3) x3
= 0.207
mass of O is the moles x molar mass (16)
therefore the mass of O is 3.3 grams