Gravitational potential energy =
(mass) x (gravity) x (height)
= (5.8 kg) x (9.8 m/s²) x (2.5 m)
= 142.1 Joules (C)
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
Explanation:
(a)
The photoelectric effect is the phenomenon in which the light of the particular frequency incidents on the material. Then the emission of the electrons from the surface of the material occurs.
This phenomenon could not be explained by Newtonian physics.
In Newtonian physics, the energy is not discrete. In quantum mechanics, the energy is discrete. This is the main why the photoelectric effect could not be explained by Newtonian physics.
(b)
Light consists of photons. The photon is a packet of energy. It is also called quanta. The energies of the photons are quantized.
When a photon strikes on the surface of metal then the energy of photon is absorbed by an electron in the metal so that it may eject from the surface. This phenomenon is called the photoelectric effect.
(c)
In quantum mechanics, wave-particle duality concept is used to explain the wave-particle nature of the light. Light behaves as particle as well as wave. It shows both nature. The photoelectric phenomenon shows the particle nature of the light. It acts as a particle when it hits the surface of the metal.
In line spectra, the electron is excited to an energy level. In this case energy is transferred from photon to electron. There is a collision between photon and electron. The change in momentum will occur. It shows the particle nature of the light.
Answer:
Volume of each grain of sand:

radius of the spherical grain is given,

The grains are made up of silicon dioxide.
The density is equal to 
Then, the mass of each grain is given by:
