Answer:
The liquid formed from a melted solid has the same mass as the solid has.
Explanation:
As long as no water can escape, the mass of the ice before melting must equal the mass of the liquid water after.
The net force acting on the crate is determined as 176 N to the left.
<h3>Net force acting on the crate</h3>
The net force acting on the crate is calculated as follows;
∑F = F1 + F2 + F3 + F4
F(net) = -440y + 176x + 440y - 352x
F(net) = -176 x
The resultant force is pointing in negative x direction.
Thus, the net force acting on the crate is determined as 176 N to the left.
Learn more about net force here: brainly.com/question/14361879
#SPJ1
Let the angle be Θ (theta)
Let the mass of the crate be m.
a) When the crate just begins to slip. At that moment the net force will be equal to zero and the static friction will be at the maximum vale.
Normal force (N) = mg CosΘ
μ (coefficient of static friction) = 0.29
Static friction = μN = μmg CosΘ
Now, along the ramp, the equation of net force will be:
mg SinΘ - μmg CosΘ = 0
mg SinΘ = μmg CosΘ
tan Θ = μ
tan Θ = 0.29
Θ = 16.17°
b) Let the acceleration be a.
Coefficient of kinetic friction = μ = 0.26
Now, the equation of net force will be:
mg sinΘ - μ mg CosΘ = ma
a = g SinΘ - μg CosΘ
Plugging the values
a = 9.8 × 0.278 - 0.26 × 9.8 × 0.96
a = 2.7244 - 2.44608
a = 0.278 m/s^2
Hence, the acceleration is 0.278 m/s^2
Answer:
Isabella will not be able to spray Ferdinand.
Explanation:
We'll begin by calculating the time taken for the water to get to the ground from the hose held at 1 m above the ground. This can be obtained as follow:
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =.?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.9
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s
Next, we shall determine the horizontal distance travelled by the water. This can be obtained as follow:
Horizontal velocity (u) = 3.5 m/s
Time (t) = 0.45 s
Horizontal distance (s) =?
s = ut
s = 3.5 × 0.45
s = 1.58 m
Finally, we shall compare the distance travelled by the water and the position to which Ferdinand is located to see if they are the same or not. This is illustrated below:
Ferdinand's position = 10 m
Distance travelled by the water = 1.58 m
From the above, we can see that the position of the water (i.e 1.58 m) and that of Ferdinand (i.e 10 m) are not the same. Thus, Isabella will not be able to spray Ferdinand.