The new velocity after 4 s is 40 m/s
The height of the spaceship above the ground after 5 seconds is 1,127.5 m
The given parameters for the first question;
- initial velocity of the car, u = 76 m/s
- acceleration of the car, a = - 9 m/s²
The new velocity after 4 s is calculated as;
v = u + at
v = 76 + (-9)(4)
v = 76 - 36
v = 40 m/s
(5)
The given parameters;
- height above the ground, h = 500 m
- velocity of spaceship, u = 150 m/s
The height of the spaceship above the ground after 5 seconds is calculated as;

Learn more here: brainly.com/question/24527971
Answer:
Gamma rays
Explanation:
Gamma rays is at the end of the electromagnetic spectrum, and has the highest energy. It propagates through space at 3x10^8 m/s and has the smallest wavelength and the highest frequency. It is given off by atoms of element as they undergo nuclear disintegration.
Answer:
The speed of the ball B is 6.4 m/s. The direction is 50 degrees counterclockwise.
Explanation:
Assuming the collision is elastic, use the conservation of momentum to solve this problem. The conservation law implies that:

(the total momentum of the two balls is the same before (index 0) and after (index 1) the collision). Since B is stationary and A and B have the same mass, this simplifies to:

and allows us to determine the velocity of ball B after the collision:

The above involves vectors. Your problem suggests to use the component method, which I am assuming means solving the above equation separately along the x and y axes. Define x to align with the original line of motion of the ball A before the collision, and y to be perpendicular to x, pointing up:

We just need to compute the x- and y-components of the known velocity of the ball A. Drs. Sine and Cosine come to help here.

so

The speed of the ball B is
. The direction (angle from horizontal) is
, i.e., 50 degrees counterclockwise.
First you must look for the coefficient of friction of the dry asphalt. For this case, searching in google, the value is 0.85. Then, you must find the normal force by making a free-body diagram. In the diagram, you sum up forces in vertical direction and find that the normal force is 60N. Then, by sum of forces in a horizontal direction, the friction force will be given by:F = (60) * (0.85) = 51N.51N is the magnitude of the minimum force needed to start the rubber block moving across the dry asphalt