You put your 5 fingers up then you put 4 fingers up on the same hand
The speed of the sound wave in the medium, given the data is 3900 m
<h3>Velocity of a wave </h3>
The velocity of a wave is related to its frequency and wavelength according to the following equation:
Velocity (v) = wavelength (λ) × frequency (f)
v = λf
With the above formula, we can obtain the speed of the sound wave. Details below:
<h3>How to determine speed of the sound wave</h3>
The speed of the wave can be obtained as illustrated below:
- Frequency (f) = 600 Hz
- Wavelength (λ) = 6.5 m
- Velocity (v) =?
v = λf
v = 6.5 × 600
v = 3900 m
Thus, the speed of the sound wave in the medium is 3900 m
Learn more about wave:
brainly.com/question/14630790
#SPJ4
The troposhere is the lowest layer of the Earth's atmosphere and the thermosphere is the second, above the mesosphere and below the exosphere.
Thermosphere is the largest of all the layers. It is within the thermosphere that ultraradiation causes ionization.
The troposhere is where 99% of the water vapor and aerosols are found. It is denser than the layers above it because of the weight compressing it. The troposphere as well contains approximately 75% of the mass of the atmosphere. Most of the world's weather takes place in the troposhere.
<span> <span>We will need to work with the components of the velocity, in the x and the y direction. We will say up is positive so g is -9.81 m/s^2.
Given that the angle was 32 degrees:
Velocity up (in the y direction) is 55 m/s * sin 32 = 29.15 m/s
And
Velocity forward (in the x direction) is 55 m/s * cos 32 = 46.64 m/s
The acceleration of gravity, -9.81 m/s2 continuously decreases the velocity in the y direction. At the maximum height, the velocity will be zero. This should make sense, for as soon as the decreasing velocity becomes negative, the arrow will start to fall.
We have v = v(0) + at
And we set this to zero and solve for t:
0 = 29.15 + -9.81t
9.81t = 29.15
t = 2.97 seconds
To calculate height at this point, we use the equation that calculates position based on time, acceleration, and initial velocity (we could use an alternate too, an equation derived from the one we are now using and v = v(0) + at.
x = x(0) + v(0)t + (1/2)at^2
x = 0 + 29.15 * 2.97 + 0.5 9.81 (2.97)^2
x = 43.30 m
For a projectile, the plot of distance traveled in the upward direction is a parabola, and it takes the same amount of time to come down as it did to go up.
We can double 2.97 to get the time of impact on the target at 2(2.97) = 5.94 seconds
(Alternately, if you like, you can solve
0 = 0 + 29.15t + 0.5 9.81 t^2
And find that the two roots are 0 and 5.94).
http://www.math.com/students/calculators... will do the quadratic for you.
Given a horizontal velocity of 46.64 m/s, we can calculate
46.64 m/s (5.94 s) = 277 m for the distance of the target.</span></span>
The strength, and possibly the shape and direction, of the electric field
around a charged particle depends on the location of the particle.
If the process of measuring the field causes the particle to move, then
the measurement you get wouldn't mean anything.
Your measurements wouldn't show the ACTUAL field around the particle.
They would show what the field is like AFTER something comes along
and distorts it, and that's not what you're trying to measure.
It would be like carrying a flame thrower into a freezer when you go in
to measure the temperature in there.
Or if you had to measure how much light is leaking into a dark room,
and you carried a flashlight with you to see your way around in there.