Answer:
Explanation:
A. The kinetic energy is the same as the initial potential energy:
PE = mgh = (215 N)(2.0 M) = 430 J
__
B. The velocity achieved by falling from a height h is given by ...
v = √(2gh)
v = √(2·9.8 m/s^2·2 m) = √(39.2 m^2/s^2)
v ≈ 6.26 m/s
Answer: AAAAAAAAGGGGGHHHHJJJGSSSUUUUUUUUYCCFVGBHNJM
Explanation: YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET
Answer:
the angular speed is around 45
Explanation:
Possibly, if you have list of densities and you have to match it. I can't think of any other scenarios in which it would be able to.
Hope I helped! :)
Answer:
The height of the image will be "1.16 mm".
Explanation:
The given values are:
Object distance, u = 25 cm
Focal distance, f = 1.8 cm
On applying the lens formula, we get
⇒ 
On putting estimate values, we get
⇒ 
⇒ 
⇒ 
As a result, the image would be established mostly on right side and would be true even though v is positive.
By magnification,
and
⇒ 
⇒ 
⇒ 