From the formula of W = F·d , becuase we have the values for W and d we can find F
W = F·d
F= W/d
= 250/5
= 50 N
40 N of force was applied
Polyunsaturated fatty acids which is Omega-3 fatty acids.
The correct option is B.
The length of an object, the mass of an object and the rate of time passage for an object can change depending on the situation which the object is subject to. For instance in space, the mass and the velocity of an object usually change. But, the value of the speed of light in the space is the same for all observers regardless of the motion of an object, that is, the speed of light is a constant.<span />
A dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
s = vt - 1 / 2 at²
s = Displacement
v = Final velocity
t = Time
a = Acceleration
s = 5 m
t = 1 s
a = 10 m / s²
5 = ( v * 1 ) - ( 1 / 2 * 10 * 1 * 1 )
5 = v - 5
v = 10 m / s
The equation used to solve the given problem is an equation of motion. In a free fall motion, usually air resistance is not considered for easier calculation. If air resistance is considered acceleration cannot be constant throughout the entire motion.
Therefore, a dropped object only fall 5 meters down after 1 second of freefall, yet achieve a speed of 10m/s due to acceleration due to gravity.
To know more about equation of motion
brainly.com/question/5955789
#SPJ1
Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.