Answer:
1,85 m / s²
Explanation:
De la pregunta anterior, se obtuvieron los siguientes datos:
Velocidad inicial (u) = 40 km / h
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
A continuación, convertiremos 40 km / ha m / s. Esto se puede obtener de la siguiente manera:
1 km / h = 0,2778 m / s
Por lo tanto,
40 km / h = 40 km / h × 0,2778 m / s / 1 km / h
40 km / h = 11,11 m / s
Por tanto, 40 km / h equivalen a 11,11 m / s.
Finalmente, determinaremos la aceleración del móvil durante el período en el que desaceleró. Esto se puede obtener de la siguiente manera:
Velocidad inicial (u) = 11,11 m / s
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
a = (v - u) / (t₂ - t₁)
a = (0 - 11,11) / (6 - 0)
a = - 11,11 / 6
a = –1,85 m / s²
Por tanto, la aceleración del móvil durante el período en el que se ralentizó es de –1,85 m / s²
Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
Explanation:
We know that the pressure can be calculated in the following way:
p = d·g·h
with d being the density of the water, g the gravitational acceleration and h the depth.
Also d of the water = 1000 kg/m^3 circa and g = 9.8 m/s^2 circa
117,500 Pa = 1000kg/m³ · 9.8m/s² · h
Therefore h = 11,9 m