Answer:
Distance, d = 112.5 meters
Explanation:
Initially, the bicyclist is at rest, u = 0
Final speed of the bicyclist, v = 30 m/s
Acceleration of the bicycle, 
Let s is the distance travelled by the bicyclist. The third equation of motion is given as :



s = 112.5 meters
So, the distance travelled by the bicyclist is 112.5 meters. Hence, this is the required solution.
Here, we are required to find the relationship between balls of different mass(a measure of weight) and different volumes.
- 1. Ball A will have the greater density
- 2. Ball C and Ball D have the same density.
- 3. Ball Q will have the greater density.
- 4. Ball X and Y will have the same density
The density of an object is given as its mass per unit volume of the object.
Mathematically;.
For Case 1:
- Va = Vb and Ma = 2Mb
- D(b) = (Mb)/(Vb) and D(a) = 2(Mb)/Vb
- Therefore, the density of ball A,
- D(a) = 2D(b).
- Therefore, ball A has the greater density.
For Case 2:
- D(c) = (Mc)/(Vc) and D(d) = (1/3)Md/(1/3)Vd
- Therefore, ball C and D have the same density
For Case 3:
- Vp = 2Vq and Mp = Mq
- D(p) = (Mq)/2(Vq) and D(q) = (Mq)/Vq
- Therefore, the density of ball P is half the density of ball Q
- Therefore, ball Q has the greater density.
For case 4:
Therefore, Ball X and Ball Y have the same density.
Read more:
brainly.com/question/18110802
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.

Answer:
I really hope this is right I think this is Diffuse I'm sorry if its worng
C is correct answer.
Walking along a 6 meter beam without falling helps to develop balance.
Hope it helped.
-Charlie