Yes... that is correct.
CH4 is methane so the coefficent in front of it would double the number of atoms of each element
Answer:
Explanation:The only difference between these different types of radiation is their wavelength or frequency. Wavelength increases and frequency (as well as energy and temperature) decreases from gamma rays to radio waves.
Answer: Tall fescue can be harmful to grazing cattle and horses because the grass can become tough and infected with endophytes, causing poor grazing. Switchgrass and tall fescue are less likely to be poisonous to dogs, cats or humans than to horses or cattle, but eating either of them might cause stomach upset.
Explanation:
Answer:
The temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.
Explanation:
Atoms and molecules are in constant motion. Kinetic energy is a form of energy, known as energy of motion. Kinetic energy is a form of energy, known as energy of motion. The kinetic energy of an object is that which is produced due to its movements, which depends on its mass (m) and speed (v).
Temperature refers to a quantity used to measure the kinetic energy of a system. That is, temperature is defined as an indicator of the average kinetic energy of the particles in a body.
So, since temperature is a measure of the speed with which they move, the higher the temperature the faster they move.
Finally, <u><em>the temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.</em></u>
Answer : The expression for reaction quotient will be :
(1) ![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) ![Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)
Explanation :
Reaction quotient
: It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
(1) The given balanced chemical reaction is,

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :
![Q_c=\frac{[SO_2][HF]^4}{[SF_4]}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BSO_2%5D%5BHF%5D%5E4%7D%7B%5BSF_4%5D%7D)
(2) The given balanced chemical reaction is,
![2MoO_2(s)+XeF_2(g)\rightarrow 2MoF(l)+Xe(g)+2O_2(g)[/texIn this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted. So, the expression for reaction quotient will be :[tex]Q_c=\frac{[O_2]^2[Xe]}{[XeF_2]}](https://tex.z-dn.net/?f=2MoO_2%28s%29%2BXeF_2%28g%29%5Crightarrow%202MoF%28l%29%2BXe%28g%29%2B2O_2%28g%29%5B%2Ftex%3C%2Fp%3E%3Cp%3EIn%20this%20expression%2C%20only%20gaseous%20or%20aqueous%20states%20are%20includes%20and%20pure%20liquid%20or%20solid%20states%20are%20omitted.%20%20So%2C%20the%20expression%20for%20reaction%20quotient%20will%20be%20%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DQ_c%3D%5Cfrac%7B%5BO_2%5D%5E2%5BXe%5D%7D%7B%5BXeF_2%5D%7D)