Answer: 529.9 Hz
Explanation:
Here we need to use the Doppler equation, so we have:
f' = f*(v + v0)/(v - vs)
Here, f is the frequency = 500Hz
v is the velocity of the wave, = 334m/s
v0 is the velocity of the observer = 20m/s
vs is the velocity of the source = 0m/s
Then we have:
f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz
Answer:
A. The closest point in the Moon's orbit to Earth
Explanation:
The perigee is defined as the closest point in the orbit of an object (such as a satellite) from the centre of the Earth. In this case, the Earth's satellite is the Moon, so the perigee is defined as the closest point in the Moon's orbit to Earth. so option A is the correct one.
Let's see instead the names of the other options:
B. The farthest point in the Moon's orbit to Earth --> this point is called apogee
C. The closest point in Earth's orbit of the Sun --> this point is called perihelion
D. The Sun's orbit that is closest to the Moon --> this point has no specific name
In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
"The" (and any subsequent words) was ignored because we limit queries to 32 words.