think you messed up the symbol for resistor as resistors are measured in ohms where the symbol used for ohms is Greek omega
solving for average power in secondary coil:
average power =(current rms)^2*resistance⇒with a little algebra:
current rms=(√average power/resistance)
current rms=√160W/10Ω
current rms=4amps.
average power is also equal to current rms*voltage rms
with some algebra we can solve for voltage in the secondary wire:
voltage rms= average power/ current rms
voltage rms= 160W/4A
voltage rms=40Volts
now that we have voltage in the soecondary we can solve for the amount of turns in the secondary: Voltage secondary/voltage primary=number of turns in secondary/ number of turns in primary. using some algerbra we can solve for number of turns in secondary: (Voltage secondary/voltage primary)*number of turns in primary=number of turns in secondary
(40V/120V)*75turns=number of turns in secondary
number of turns in secondary=25turns
Answer:
A. 58.8m/s
Explanation:
The acceleration due to gravity is 9.8 m/s², so the velocity after 6 seconds is ...
v = at
v = (9.8 m/s²)(6 s) = 58.8 m/s
Answer:
Two factors effecting the magnitude of the force of gravity between 2 objects are the product of their masses and square of distance between them.
Explanation:
According to Newton's law of universal gravitation

where F is the gravitational force, G is the universal gravitational constant and its value is 6.6743 × 10⁻¹¹ Nm²/kg₂ , m₁ and m₂ are masses of bodies and r is the distance between them.
It can be seen from the above equation that F is directly proportional to the product of the masses and inversely proportional to the square of distance between them.
F ∝ m₁m₂
F ∝ 1/r²
As far as the masses of the bodies increase, magnitude of the Gravitational force increases and if distance between them increase then Gravitational force between them decreases.
Answer:
0.09 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity.
The S.I unit of acceleration is m/s².
From the question, expression for acceleration is given as
F' = ma
Using Pythagoras Theory,
√(F₁²+F₂²) = ma................... Equation 1
Where F₁ = Force of the First person on the boulder, F₂ = Force of the Second person on the boulder, F' = resultant force acting on the boulder, m = mass of the boulder, a = acceleration of the boulder.
make a the subject of the equation
a = √(F₁²+F₂²) /m................ Equation 2
Given: m = 825 kg, F₁ = 64 N, F₂ = 38 N,
Substitute into equation 2
a = [√(64²+38²)]/825
a = {√(5540)}/825
a = 74.43/825
a = 0.09 m/s²