The answer is Photosphere. The photosphere is the lowest layer<span> of the </span>solar<span> atmosphere. It is essentially the </span>solar<span> "surface" that </span>we see<span> when </span>we look<span> at the </span>Sun in "white" light. It is <span>like a glowing fog, so at a distance, it </span>looks<span> solid, the same way a cloud looks solid from a distance.</span>
Answer:
Explanation:
Given
wavelength of emissions are


Energy is given by

where h=Planck's constant
x=velocity of Light
=wavelength of emission




frequency corresponding to this emission



Energy corresponding to 



frequency corresponding to this emission



Answer:
the higher the ramp the less distance it will travel
Answer:
Centripetal acceleration = 83.77m/s²
Explanation:
<u>Given the following data;</u>
Radius, r = 0.13m
Velocity, v = 3.3m/s
To find centripetal acceleration;
Centripetal acceleration is given by the formula;
Substituting into the equation, we have;
<em>Centripetal acceleration = 83.77m/s²</em>
<em>Therefore, the centripetal acceleration of the edge of the disc is 83.77 m/s². </em>
Answer:
Explanation:
Since this is a distance v time graph, the slope of the line from 1s to 3s is the velocity. However, it looks like, at t=3, the velocity is 0, so getting the definite velocity is not going to happen. We can estimate it as closely as possible. Since the line is tending from the upper left to the lower right, the slope is negative, so the velocity is also negative. That leaves only C or D as our answers. And the slope is closer to -1 than to -5, so choice D. is the one you want.