Answer:
θ₁ = 35.32°
Explanation:
given,
refractive index of medium 1 = n₁ = 1.75
refractive index of medium 2 = n₂ = 1.24
condition to describe the refracted angle
...(1)
Using Snell's Law
n₁ sin θ₁ = n₂ sin θ₂
θ₁ , θ₂ is the angle of incidence and refractive index
n₁. n₂ is the refractive index medium 1 and medium 2
1.75 x sin θ₁ = 1.24 x sin θ₂
From equation (1)
1.75 x sin θ₁ = 1.24 x sin (90-θ₁)
1.75 sin θ₁ = 1.24 cos θ₁
tan θ₁ = 0.708
θ₁ = 35.32°
Hence, angle of incidence is equal to θ₁ = 35.32°
The medium through which sound travels inside a bird’s body is the air. This is further explained below.
<h3>What is Air?</h3>
Generally, Air is simply defined as the invisible combination of gases, and this gas exists around the Earth.
In conclusion, Sound wave allows birds to communicate.
Read more about sound
brainly.com/question/14595927
#SPJ1
Answer:
I think that's Newton's second law of motion
Explanation:
f = m(v-u)
________
t
since a = (v-u)t
f = ma
Answer:
85.5 km/h
Explanation:
= time interval for first phase = 14 min = h = 0.233 h
= time interval for second phase = 46 min = h = 0.767 h
= average speed for the entire trip = 74 km/h
= average speed in first phase = 36 km/h
= average speed in second phase
= distance traveled in first phase
= distance traveled in first phase
average speed is given as
km/h
Answer:
<em>Explanation below</em>
Explanation:
<u>Speed vs Velocity
</u>
These are two similar physical concepts. They only differ in the fact that the velocity is vectorial, i.e. having magnitude and direction, and the speed is scalar, just the magnitude regardless of the direction. They are strongly related to the concepts of displacement and distance, which are the vectorial and scalar versions of the space traveled by a moving object. The velocity can be computed as
Where is the position vector and t is the time. The speed is
To compute , we only need to know the initial and final positions and subtract them. To compute d, we need to add all the distances traveled by the object, regardless of their directions.
Maggie walks to a friend's house, located 1500 meters from her place. The initial position is 0 and the final position is 1500 m. The displacement is
and the velocity is
Now, we know Maggie had to make three different turns of direction to finally get there. This means her distance is more than 1500 m. Let's say she walked 500 m in all the turns, then the distance is
If she took the same time to reach her destiny, she would have to run faster, because her average speed is