<span>Vibration is the Answer</span>
Answer:
E = 1580594.95 N/C
Explanation:
To find the electric field inside the the non-conducting shell for r=11.2cm you use the Gauss' law:
(1)
dS: differential of the Gaussian surface
Qin: charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85 × 10-12 C2/N ∙ m2
The electric field is parallel to the dS vector. In this case you have the surface of a sphere, thus you have:
(2)
Qin is calculate by using the charge density:
(3)
Vin is the volume of the spherical shell enclosed by the surface. a is the inner radius.
The charge density is given by:

Next, you use the results of (3), (2) and (1):

Finally, you replace the values of all parameters, and for r = 11.2cm = 0.112m you obtain:

hence, the electric field is 1580594.95 N/C
The mass of Jupitar is obtained from the calculations as 5.8 * 10^-14 Kg.
<h3>What is the mass of Jupitar?</h3>
There are nine planets in the solar system and the sun lies at the enter of our solar system. This is the heliocentric model of the solar system.
Given that;
T^2 = GMr^3/4π
T = period
G = gravitational constant
r = radius
M = mass of Jupitar
Now;
1 day = 86400 seconds
1.77 days = 1.77 days * 86400 seconds/1 day
= 152928 seconds
Making M the subject of the formula;
M =4πT^2/Gr^3
M = 4 * 3.142 * (152928)^2/6.67 × 10^-11 * (422 × 10^9)^3
M = 2.9 * 10^11/5.0 * 10^24
M = 5.8 * 10^-14 Kg
Learn more about mass of a planet:brainly.com/question/13851553
#SPJ1
Answer:
a) 19.4 m/s
b) 19 m/s
Explanation:
a) In the given question,
the potential energy at the initial point = Ui = 0
the potential energy at the final point = Uf = mgh
the kinetic energy at the initial point = Ki = 1/2 mv₀².
the kinetic energy at the final point = Kf = 0
work done by air= Ea= fh = 0.262 N
Now, using the law of conservation of energy
initial energy= final energy
Ki +Ui = Kf + Uf +Ea
1/2 mv₀² + 0 = 0 + mgh + fh
1/2 mv₀² = mgh + fh
h = v₀²/ 2g (1 +f/w)
calculate m
m= w/g = 5.29 /9.8
= 0.54 kg
h = 20 ²/ (2 x9.80) x (1 0.265/5.29)
h = 19.4 m.
b) 1/2 mv² + 2fh = 1/2 mv₀²
Vg = 19 m/s
I hope this can help you ask me if you need help again