Answer:
Speed = 10.24 m/s.
Explanation:
<u>Given the following data;</u>
Distance = 100m
Time = 9.77
To find her speed;
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the equation;

Substituting into the equation, we have;

<em>Speed = 10.24 meter per seconds. </em>
Answer:

Explanation:
Let the mass of bullet is m, initial velocity of bullet is vi and c be the specific heat of the bullet.
Kinetic energy, K = 1/2 mvi^2
According to the question, 50% of the kinetic energy is equal to the heat energy absorbed by the bullet.
50% of K = mass of bullet x specific heat x rise in temperature
1/4 mvi^2 = m x c x ΔT

Answer: Graphing data is used to display data because it is easier to see trends in the data when it is displayed visually compared to when it is displayed numerically in a table.
Answer: The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Explanation:
Mass of the astronaut on the moon , m= 72 kg
Acceleration due to gravity on moon,g = 1.63 
According to Newton second law of motion: F = ma
This will changes to = Weight = mass × g

The weight of a 72.0 kg astronaut on the Moon is 117.36 N.
Answer:
You didn't add the choices but I'll add some ideas anyway.
Explanation:
Let's start with perhaps the most obvious impact of science on the economy: technology. Scientific discoveries lead to the development of new technologies, which then enter into international markets as highly desirable products.
While humans have always traded technologies, the relationship between technological development and economic growth really dates back to the Industrial Revolution of the 18th and 19th centuries. This was the first time that products were being produced on a massive scale, and it was new technologies in steam engines that allowed this to happen.
As people produced more goods, they developed more complex networks of economic exchange across the world. In fact, our modern ideas about free-market economies and capitalism actually date back to this same time period.
Our modern technologies and our modern economies developed simultaneously. We couldn't have one without the other. Today the United States' economy is very largely dependent on the exportation of communications and digital technologies. Its place in the global economy is not defined by its agriculture or raw products, but by its technologies.