The kinetic energy K = 0.5 * m * v² must be equal to the potential energy U = m * g * h.
m mass
v velocity
h height
g = 9.81m/s²
The mass m cancels out:
0.5 * v² = g * h
Solve for height h and transform to distance traveled.
(sin (4°) = height / distance)
You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave.
<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
The peppered moth is a temperate species of night-flying moth. Peppered moth evolution is an example of population genetics and natural selection.
Answer:
246.28 K
Explanation:
The total energy of one mole of gas molecules can be calculated by the formula given below
E = 
Where R is gas constant and T is absolute temperature.
Put the value of R as 8.314 and temperature as 245 , we get
E = 
= 3055.4 J
Add 16 j to it
Total energy of gas molecules = 3055.4 + 16 = 3071.4 J.
If T be the temperature after addition of energy then
= 3071.4
T =
T = 246.28 K