Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.