A has less energy and lower frequency, while B has greater energy and higher frequency.
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.
Answer:
The objects must be different temperatures.
Explanation:
For heat to flow between two objects, heat must be flowing between them. The thermal gradient allows for the flow of heat. Heat is a form of energy that is dissipated from one place to another based on temperature difference.
Temperature is the degree of hotness or coldness of body. It is power by heat energy between two bodies.
Heat generally flows from a body at high temperature to one at low temperature. When thermal equilibrium is established and both bodies have the same temperature, heat will stop to flow.
From the word compound, the compound machine is already a combination of two or more types of simple machine. Thus, the answer is letter C. Because of its complexity, it is able to perform several other functions than a simple one.
Answer:
energy which a body possesses by virtue of being in motion.
Explanation: