Answer : The temperature of the hot reservoir (in Kelvins) is 1128.18 K
Explanation :
Efficiency of carnot heat engine : It is the ratio of work done by the system to the system to the amount of heat transferred to the system at the higher temperature.
Formula used for efficiency of the heat engine.

where,
= efficiency = 0.780
= Temperature of hot reservoir = ?
= Temperature of cold reservoir = 
Now put all the given values in the above expression, we get:



Therefore, the temperature of the hot reservoir (in Kelvins) is 1128.18 K
Hello There!
There are 5,280 feet in 1 mile.
Have A Great Day!
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
Newtons law of gravitation is called the universal law of gravitation because it is applicable for all masses at all distances, independent of the medium.
This is A.) lake. A river is a small amount of water that isn't always fresh water. A stream is too small. And an ocean is made of salt water.