Answer:
Explanation:
according to balance chemical equation
3 A2 moles produced 2 moles of A3B
so 12 moles A2 will produced moles of A3B= 12*2/3=24/3= 8
therefore 12 moles of A2 produced 8 moles of A3B
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.
Answer:
\text{0.30 cm}^{3} \times \left (\dfrac{10^{-2}\text{ m}}{\text{1 cm}}\right )^{3} = 3.0 \times 10^{-7} \text{ m}^{3}
Explanation:
0.030 cm³ × ? = x m³
You want to convert cubic centimetres to cubic metres, so you multiply the cubic centimetres by a conversion factor.
For example, you know that centi means "× 10⁻²", so
1 cm = 10⁻² m
If we divide each side by 1 cm, we get 1 = (10⁻² m/1 cm).
If we divide each side by 10⁻² m, we get (1 cm/10⁻² m) = 1.
So, we can use either (10⁻² m/1 cm) or (1 cm/10⁻² m) as a conversion factor, because each fraction equals one.
We choose the former because it has the desired units on top.
The "cm" is cubed, so we must cube the conversion factor.
The calculation becomes

Answer: Gravity.
Explanation:
Earth and other objects would have fly off into space in a straight line if there would have been no gravity in between objects.
The gravity can be defined as the force between two objects in space which keeps two objects together in the space.
It is also responsible for holding the objects in space, making them move on their orbits, not allowing the heavenly bodies to crash.
So, there would be no gravity the objects will fall off in a straight line and none of the objects would be at its specified position.