Transportation seems like the right answer
<span>1. What is the molar mass of gold?
Molar mass is a unit that expresses the mass of a molecule per one mol. The molar mass can be obtained by adding the neutron with the proton of the atoms. Gold has atomic number 79 so the proton is 79. The number of the neutron is 118. Then the molar mass would be: 79 + 118 = </span>197 g/mol<span>
</span><span>2. Calculate the number of moles of gold (Au) in the sample. Show your work.
</span>In this question, you are given the mass of the gold and asked for how many moles the sample has. To find the number of moles you just need to divide the weight by the molar mass.
For 45.39 grams of gold, the number of moles would be:
45.39 / (197g/mol)= 0.23 moles
3. Calculate the number of atoms of gold (Au) in the sample. Show your work.Moles is unit of a number of molecules but 1 mol doesn't represent 1 molecule. The number of atoms can be obtained by multiplying the number of moles with Avogadro number. The calculation would be:
0.23 moles * (6.023 * 10^23 molecules/mol)= 1.387 * 10^23 molecules
Kinetic energy is energy that comes from motion. Anything that is currently in motion has kinetic energy.
Let’s look at each example to determine if they have kinetic energy.
First off, a car in the garage: let’s ask ourselves- Is the car in motion?
No, it is sitting in the garage. It is not moving; therefore it doesn’t have any kinetic energy.
Next, a box sitting on a shelf: let’s ask ourselves the same question- Is the box in motion?
No, it is sitting on the shelf. Again, it is not moving. It doesn’t have any kinetic energy.
Our third item is a ball lodged in a tree: again, we will ask ourselves the same question- Is the object moving?
No, it isn’t moving. Again, since it is not moving, it will not have kinetic energy.
Our last item is a frisbee flying through the air: asking ourselves the same question- Is it moving?
Yes, the object is moving. Yes, it has kinetic energy.
The frisbee flying through the air has kinetic energy.