The temperature to which it must be heated in order to fit the shaft is 73.33 ⁰C.
<h3>
Linear expansivity </h3>
The temperature to which it must be heated in order to fit the shaft is calculated as follows;

where;
- ΔT is change in temperature
- ΔL is change in length = 50.04 mm - 50 mm = 0.04 mm
- α is coefficient of linear expansion
- L is original length
ΔT = (0.04)/(50 x 15 x 10⁻⁶)
ΔT = 53.3 ⁰C
<h3>Final temperature</h3>
T₂ - T₁ = ΔT
T₂ = ΔT + T₁
where;
- T₂ is final temperature
- T₁ is initial temperature
T₂ = 53.3 + 20
T₂ = 73.33 ⁰C
Learn more about linear expansivity here: brainly.com/question/14325928
#SPJ1
Answer:
The Answer is A. The slope is upward.
Explanation:
yes because your mass doesn't change but your weight can
ex- if you travel to Saturn your weight would change but your mass would stay the same
Answer:
The charge in each ball will be 3 * 10^-12 C
Explanation:
(Assuming the correct charge of the second ball is 8 * 10^-12)
When the balls are brought in contact, all the charges are split evenly among then.
So first we need to find the total charge combined:
(-3 * 10^-12) + (8 * 10^-12) + (4 * 10^-12) = 9 * 10^-12 C
Then, when the balls are separated, each ball will have one third of the total charge, so in the end they will have the same charge:
(9 * 10^-12) / 3 = 3 * 10^-12 C
So the charge in each ball will be 3 * 10^-12 C
Answer:
the balls would move closer to each other
Explanation: