<h2>
Answer:</h2>
1.77V
<h2>
Explanation:</h2>
The electromotive force voltage (E) in a cell, is related to the lost voltage (
) and the terminal voltage (
) as follows;
E =
- 
Where;
The lost voltage (
) is the product of the internal resistance (r) of the cell and current (I) in the cell. i.e
= I x r
<em>Substitute </em>
<em> = I x r into equation (i) as follows;</em>
E =
- (I x r) ----------------------(ii)
<em>According to the question;</em>
E = 1.54V
I = 2.15A
r = 0.105Ω
<em>Substitute these values into equation(ii) as follows;</em>
1.54 =
- (2.15 x 0.105)
1.54 =
- (0.22575)
1.54 =
- 0.22575
<em>Solve for </em>
<em>;</em>
= 1.54 + 0.22575
= 1.54 + 0.22575
= 1.77V
Therefore, the terminal voltage of the cell is 1.77V
The ocular lens or eyepiece lens
Answer:
Explanation:
Given
Mass of ice 
mass of water 
Initial Temperature of water 
Let T be the Final Temperature of mixture
Latent heat of Fusion 
heat required to melt ice completely is

Heat released by water is taken by ice thus



Answer:
The carpet has a buildup of electrons in it that get released onto your body when you rub across the floor while the hardwood doesn't have electrons built up inside of it.
Explanation:
I study that
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
And the correct answer is A) on the surface of the moon; because Newton's second law provides the explanation for the behavior of objects upon which the forces do not balance. The law states that unbalanced forces cause objects to accelerate with an acceleration that is directly proportional to the net force and inversely proportional to the mass.
So the correct answer is A) on the surface of the moon
Hope I helped.