Answer:
a) the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Explanation:
Given that;
Gravitational acceleration g = 9.81 m/s²
Mass m = 5 kg
Extension of the spring X = 50 mm = 0.05 m
Spring constant k = ?
we know that;
mg = kX
5 × 9.81 = k(0.05)
k = 981 N/m
a)
Given that; Acceleration of the elevator a = 2 m/s² upwards
Extension of the spring in this situation = X1
Force exerted by the spring = F
we know that;
ma = F - mg
ma = kX1 - mg
we substitute
5 × 2 = 981 × X1 - (5 ×9.81 )
X1 = 0.06019 m
X1 = 60.19 mm
Therefore the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
B)
Acceleration of the elevator = a
The spring is relaxed i.e, it is not exerting any force on the box.
Only the weight force of the box is exerted on the box.
ma = mg
a = g
a = 9.81 m/s² downwards.
Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Answer: The correct answer is:
Galileo used instruments and experiments to show him what nature was doing, instead of relying on pure logic
Explanation:
Galileo can be considered as one of the precursors of experimentation and the scientific method. A method that doesn't rely on "common sense" and rationalization and logic, but instead is fuelled by a disposition of skepticism and rather makes claims about reality based on experimentation and empirical data shows.
Galileo differed from his predecessors because he actually used and developed instruments and method to reliable measure and observe what nature was doing, instead of relying on pure logic.
Answer:
a) n = 9.9 b) E₁₀ = 19.25 eV
Explanation:
Solving the Scrodinger equation for the electronegative box we get
Eₙ = (h² / 8m L²2) n²
where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number
In this case En = 19 eV let us reduce to the SI system
En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J
n = √ (In 8 m L² / h²)
let's calculate
n = √ (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²
n = √ (98) n = 9.9
since n must be an integer, we approximate them to 10
b) We substitute for the calculation of energy
In = (h² / 8mL2² n²
In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹ (1.4 10⁻⁹)² 10²
E₁₀ = 3.08 10⁻¹⁸ J
we reduce eV
E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)
E₁₀ = 1.925 101 eV
E₁₀ = 19.25 eV
the result with significant figures is
E₁₀ = 19.25 eV