C. copper
Explanation:
Copper is the best conductor of heat from the given options. Plastic, wood and cotton are all poor conductors other wise known as insulators.
Metals are typically good conductors of heat.
- they generally do not have a high specific heat capacity which implies that they get heated easily.
- a good conductor allows heat to flow fast and it simultaneously loses heat readily too.
- copper is a good conductor, when heat its perfectly allows heat to pass through
- when heat is removed, it loses it very fast.
Learn more:
Conductors brainly.com/question/2500879
#learnwithbrainly
The first positively essential requirement is that
you absolutely have to know what 'a' and 'b' are.
I have no clue, so this is as far as I can go.
Explanation:
Since, it is given that one hand completes 3.19 vibrations in 8.46 sec. Therefore, in one second the number of vibrations will be as follows.

= 0.377 vibrations
Hence, frequency (f) = 0.38 Hz
Now, formula to calculate the speed is as follows.
v = 
or,
= 
= 1.57 cm
Thus, we can conclude that the wavelength is 1.57 cm.
Answer:
Electrons are influenced by internal forces.
-On the temperature, density of electrons per unit of volume and relaxation time.
-The temperature
Explanation:
The Drude model neglects interactions between electrons and ions and with themselves. Those interactions (by which we refer as electromagnetic forces) influence in the random movement and freedom of the electron. So, they could be more restricted or could influence in conductivity more.
The deduction of the resistivity comes from the Ohm's law, which states that the Electric field in the material is proportional to the current density of electrons by a constant, which is the resistivity itself. The equation goes as follows:

Where e refers to electron (or the charge of it), τ is the relaxation time (average time between collisions), m is the mass and n is the density of charges (electrons in this case) per volume. However, experimentally resistivity is also dependent on temperature, which actually influence the relaxation time. The thermal energy influence in the behavior of the electrons, making them collide with phonons, have more randomness and reduced mean free path.