The most generally accepted form of conclusive evidence for the theory of Evolution is the fossil record.
<h3>What is the theory of Evolution?</h3>
- The theory of evolution was proposed by Charles Darwin.
- It states that as time passes, organisms evolve to better adapt to their environments.
- This is closely related to natural selection, which is considered a <em><u>driving force of </u></em><em><u>evolution</u></em><em><u>. </u></em>
<h3>How the fossil record supports this theory</h3>
- The fossil record provides essential data to support this claim.
- The data comes in the form of the comparison between fossils of two closely related organisms, separated by a matter of generations, that <em><u>present changes in the genetic code that made them more apt for survival.</u></em>
Therefore, we can confirm that the most generally accepted form of conclusive evidence for evolution is the presence of <u>fossils </u><u>that show the genetic correlation between two organisms and the progression of </u><u>evolution </u><u>between them. </u>
To learn more about evolution visit:
brainly.com/question/2725702?referrer=searchResults
Answer: The rate of appearance of
is 
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Rate in terms of disappearance of HBr =
= ![\frac{1d[H_2]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BH_2%5D%7D%7Bdt%7D)
Rate in terms of appearance of
= ![\frac{1d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BBr_2%5D%7D%7Bdt%7D)
![-\frac{1d[HBr]}{2dt}=\frac{d[H_2]}{dt}=\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BHBr%5D%7D%7B2dt%7D%3D%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Given :
![-\frac{1d[HBr]}{dt}=0.140Ms^{-1}](https://tex.z-dn.net/?f=-%5Cfrac%7B1d%5BHBr%5D%7D%7Bdt%7D%3D0.140Ms%5E%7B-1%7D)
The rate of appearance of
;
![\frac{1d[Br_2]}{dt}=-\frac{1d[HBr]}{2dt}=\frac{1}{2}\times 0.140=0.0700Ms^{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B1d%5BBr_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1d%5BHBr%5D%7D%7B2dt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%200.140%3D0.0700Ms%5E%7B-1%7D)
Thus rate of appearance of
is 
During a chemical rx a new product is formed