Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A. ... In reaction, a thrusting force is produced in the opposite direction.
Explanation:
Complete question:
(b) How much energy must be supplied to boil 2kg of water? providing that the specific latent heat of vaporization of water is 330 kJ/kg. The initial temperature of the water is 20 ⁰C
Answer:
The energy that must be supplied to boil the given mass of the water is 672,000 J
Explanation:
Given;
mass of water, m = 2 kg
heat of vaporization of water, L = 330 kJ/kg
initial temperature of water, t = 20 ⁰C
specific heat capacity of water, c = 4200 J/kg⁰C
Assuming no mass of the water is lost through vaporization, the energy needed to boil the given water is calculated as;
Q = mc(100 - 20)
Q = 2 x 4200 x (80)
Q = 672,000 J
Q = 672,000 J
Q = 672,000 J
Therefore, the energy that must be supplied to boil the given mass of the water is 672,000 J
Analyzing the components and decay products of school lunches.
Answer:
force; distance; energy.
Explanation:
An impulse can be defined as the net force acting an object for a very short period of time.
Mathematically, impulse is given by the formula;
An impulse is a force acting over some amount of time to cause a change in momentum. On the other hand, work is a force acting over some amount of distance to cause a change in energy.
Mathematically, work done is given by the formula;
KE = ½m*v² = ½*1.0*[0.866*3E8]² = 3.375E16 J
<span>Etot = mc²/√[1 - (v/c)²] = 1.8E17 J</span>