This is an example of the formation of Ionic compounds/bonds.
Explanation:
Intermolecular forces hold multiple molecules together and determine many of a substance's properties. All of the attractive forces between neutral atoms and molecules are known as van der Waals forces, although they are usually referred to more informally as intermolecular attraction.
Intermolecular forces are the forces of attraction or repulsion which act between neighboring particles (atoms, molecules, or ions ). These forces are weak compared to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Answer:
you will find 3 in aluminium
hydrogen should be b 3
and oxygen is 9
Answer:
The De Broglie wavelength decreases when the momentum increases
Explanation:
The De Broglie wavelength of a particle (or any object) is given by
where
h is the Planck constant
p is the momentum of the object
As we can see, the wavelength is inversely proportional to the momentum of the object: therefore we can say that, if the momentum increases, the De Broglie wavelength will decrease.
(missing part of your question):
when we have K = 1 x 10^-2 and [A] = 2 M & [B] = 3M & m= 2 & i = 1
So when the rate = K[A]^m [B]^i
and when we have m + i = 3 so the order of this reaction is 3 So the unit of K is L^2.mol^-2S^-1
So by substitution:
∴ the rate = (1x 10 ^-2 L^-2.mol^-2S^-1)*(2 mol.L^-1)^2*(3mol.L^-1)
= 0.12 mol.L^-1.S^-1