Explanation:
96.485 columbs=1 faraday will
deposit 64/2g= 32 g cu ion
therfore it will require
96,485 ×2/32 =? coulombs or 1/16 of
Faraday= 1 / 16 mole of electrons .
Answer:
1.23 × 10³ N
Explanation:
Step 1: Given and required data
- Mass of the person (m): 125 kg
- Acceleration due to the gravitational force (g): 9.81 m/s²
Step 2: Calculate the force acting between the Earth and a 125-kg person standing on the surface of the Earth
We will use Newton's second law of motion.
F = m × g
F = 125 kg × 9.81 m/s²
F = 1.23 × 10³ N
I am just answering so u can mark the other guy brainliest
Answer:
0.0025 M/min
Explanation:
The rate of a reaction can be calculated for an element, based on its stoichiometric coefficient. For a reaction:
aA + bB = cC + dD , the rate will be
r = -(1/a)x(Δ[A]/Δt) = -(1/b)x(Δ[B]/Δt) = (1/c)x(Δ[C]/Δt) = (1/d)x(Δ[D]/Δt)
Where Δ[X] is the variation of the concentration of the X compound, Δt is the time variation, and the signal of minus in the reagents compounds is because they are disappearing, so Δ[X] will be negative, and r must be positive. So, for the reaction given:
r = -(1/2)x(Δ[NO]/Δt)
r = -(1/2)x( (0.025 - 0.1)/15)
r = 0.0025 M/min