See
K.E=1/2(mass*velocity²)
so option B is the correct answer.
Brainliest pls :-)
Answer:
The car has velocity and acceleration but is not decelerating
Explanation:
Since the car is traveling at 25 mph around the curve, it has a tangential velocity. This tangential velocity is constantly changing in direction (so the car could adapt to the curve and not moving forward in a straight line), there should be a centripetal acceleration in play here. This acceleration does not slow down the car so it's not decelerating.
Answer:
Explanation:
If a perfect vacuum existed in any volume, then no sound would be able to propagate through it, because a sound wave is a pressure wave, and there would be identically zero pressure. Of course, we could get into speculations about “dark energy” or “vacuum energy” supporting pressure waves, but let’s not go there.
Answer:
Explanation:
s = s₀ + v₀t + ½at²
s = 0 + 0(15) + ½(6)(15²)
s = 675 m
Not sure what the free fall acceleration is needed for, but if the object is dropped from a high enough point, it will travel in 15 seconds
s = ½10(15²) = 2250 m if air resistance is ignored