Answer:


Explanation:
The maximum charge on the capacitor will be, at the end of the process, given by the formula (and for our values):

The maximum current on the resistor will be, at the beginning of the process, given by the formula (and for our values):

The electromagnetic spectrum allows finding the result for the question of type of electromagnetic wave has a wavelength of 956 nm
- The wave is in the near infrared range.
The electromagnetic wave is an oscillation of electric fields and magnets field that sustain each other, this wave time has the characteristics that it can travel without a material medium, for which they are of extreme importance.
Consequently the spectrum of electromagnetic waves to each part has been given a different name second to its use, for example
Range Name
Ultraviolet light 200 to 400 nm
Visible light 400 to 700 nm
Infrared light (heat ) 700 nm to 1 mm
The latter is subdivided into:
Near infrared 700 nm to 1000 nm (1 μm)
Medium infrared 1 μm to 30 μm
Far infrared 50 μm to 1000 μm
It indicates that the wavelength of the measured radiation is 956 nm, therefore it is in the near infrared range.
Learn more about the electromagnetism spectrum here: brainly.com/question/23727978
thats how it works and thanks for points
Explanation:
It is known that wave intensity is the power to area ratio.
Mathematically, I = 
As it is given that power is 28.0 W and area is
.
Therefore, sound intensity will be calculated as follows.
I = 
= 
= 
or, = 
Thus, we can conclude that sound intensity at the position of the microphone is
.
Answer:
The correct option is D
Explanation:
In trying to achieve what the student wanted to see, which is to see the relationship between the weight the cord can hold and how long the cord will stretch. Since the origin of the graph is from zero, the value plotted on the vertical axis would be just the length caused by each weights. Thus, <u>the original length would have to be subtracted from the measured length to determine the actual length caused by the weight added to the cord</u>.