If 10 g of NaOH is diluted to 500 ml with water then the concentration expressed in percent is 0.5 mol/L .
Calculation ,
Given mass in gram = 10 g
Number of moles = given mass /molar mass = 10 g / 40 g/mol = 0.25mole
Given volume in ml = 500 ml
Given volume in liter = 0.5 L
Putting the value of mass and volume in equation i we get concentration expressed in percent .
C = number of moles ×100/ volume in liter = 0.25mole ×100/ 0.5 L
C = 0.5 mol/L
Concentration of solution in terms of percentage can be expressed in two ways
1) percentage by mass
2) percentage by volume
Hence, for liquid solutions, concentration is expressed in terms of percentage by volume.
To learn more about concentration please click here ,
brainly.com/question/10380236
#SPJ4
Answer:
The correct answer is "obligatory water reabsorption in the proximal convoluted tubule".
Explanation:
The mechanism for producing concentrated urine cannot include the obligatory reabsorption of water in the proximal convoluted tubule since this process is part of the nephron, the system that filters the blood. Glucose and amino acids are reabsorbed almost entirely, as are approximately 70% of filtered potassium and 80% of bicarbonate.
Have a nice day!
The correct answer is A. The image shows a nuclear fission. This takes place in any of the heavy nuclei after capture of a neutron. This is the opposite of nuclear fusion. In this case, nuclei are broken down into two.
Answer:
Potassium (K) has 19 protons.
Each neutral atom of Potassium has 19 electrons.
Explanation:
A) Potassium has 19 protons because the atomic number tells us how many protons are in an atom of the element. (The atomic number is the number above the element symbol. For example, the number above "K" is 19, which is the atomic number).
B) If an atom is neutral, this means that the atom has neutral energy. Protons give positive energy and electrons give negative energy. For the atom to be neutral, the atom must have balanced energy, therefore, making the number of electrons equal to the number of protons in a neutral atom.