Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer:
1.34 hr
Explanation:
From the question given above, the following data were obtained:
Number of mole of electron (e) = 0.1 mole
Current (I) = 2 A
Time (t) =?
Next, we shall determine the quantity of electricity transferred. This can be obtained as follow:
1 mole of electron = 96500 C
Therefore,
0.1 mole of electron = 0.1 × 96500
0.1 mole of electron = 9650 C
Thus, 9650 C of electricity was transferred.
Next, we shall determine the time. This can be obtained as follow:
Current (I) = 2 A
Quantity of electricity (Q) = 9650 C
Time (t) =?
Q = It
9650 = 2 × t
Divide both side by 2
t = 9650 / 2
t = 4825 s
Finally, we shall convert 4825 s to hour. This can be obtained as follow:
3600 s = 1 hr
Therefore,
4825 s = 4825 s× 1 hr / 3600 s
4825 s = 1.34 hr
Thus, the time taken is 1.34 hr
I only know #8 and the raindrop would increase speed due to gravity.
Answer:
Mass PbCl₂ = 50.24g
Mass AgCl = 14.84g
Explanation:
The addition of Cl⁻ ions from the KCl solution results in the precipitation of AgCl and PbCl₂ as follows:
Ag⁺ + Cl⁻ → AgCl(s)
Pb²⁺ + 2Cl⁻ → PbCl₂(s)
If we define X as mass of PbCl₂, moles of Cl⁻ from PbCl₂ are:
Xg × (1mol PbCl₂/ 278.1g) × (2moles Cl⁻ / 1 mole PbCl₂) = <em>0.00719X moles of Cl⁻ from PbCl₂</em>
<em />
And mass of AgCl will be 65.08g-X. Moles of Cl⁻ from AgCl is:
(65.08g-Xg) × (1mol AgCl/ 143.32g) × (1mole Cl⁻ / 1 mole AgCl) = <em>0.45409 - 0.00698X moles of Cl⁻ from AgCl</em>
<em />
Moles of Cl⁻ that were added in the KCl solution are:
0.242L × (1.92mol KCl / L) × (1mole Cl⁻ / 1 mole KCl) = 0.46464 moles of Cl⁻ added.
<em />
Moles Cl⁻(AgCl) + Moles Cl⁻(PbCl₂) = Moles Cl⁻(added)
0.45409 - 0.00698X moles + (0.00719X moles) = 0.46464 moles
0.45409 + 0.00021X = 0.46464
0.00021X = 0.01055
X = 0.01055 / 0.00021
X = 50.24g
As X = Mass PbCl₂
<h3>Mass PbCl₂ = 50.24g</h3>
And mass of AgCl = 65.08 - 50.24
<h3>Mass AgCl = 14.84g</h3>
Alpha partical is a He nucleus. When decaying alpha particle mass is reduced by 4 and atomic number is reduced by 2.
The actual element which has 102 protons is No (Nobelium).
Since it has 167 neutrons, the mass = protons + neutrons = 102 + 167 = 269
after an alpha decay, the new element formed has 100 protons which is Fm ( Fermium)
the alpha decaying equation is,
₁₀₂²⁶⁹No → ₁₀₀²⁶⁵Fm + ₂⁴α + heat
the total mass and the atomic number( numbe rof protons) must be equal in both sides.