Each mole of butane needs 6.5 moles of oxygen, so 13 moles of oxygen is required for 2 moles of butane in a complete combustion
16 grams because you multiply 8x2
23. Enzyme A, as the temperature increases, the rate of reaction goes down. However, Enzyme B as the temperature goes up the reaction goes up.
24. Enzyme B is more active in a human cell, the reaction is what you want and everytime the temperature goes up in enzyme B the reaction goes up.
From the ideal gas law, PV = nRT, we can rearrange the equation to solve for T given the other parameters.
T = PV/nR
where P = 0.878 atm, V = 1.20 L, n = 0.0470 moles, and R = 0.082057 L•atm/mol•K. Plugging in our values, we obtain the temperature in Kelvin:
T = (0.878 atm)(1.20 L)/(0.0470 mol)(0.082057 L•atm/mol•K)
T = 273 K
So, the second answer choice would be correct.
Answer : The mass of
required is 18.238 grams.
Explanation : Given,
Mass of
= 83.10 g
Molar mass of
= 146 g/mole
Molar mass of
= 256.52 g/mole
The balanced chemical reaction is,

First we have to determine the moles of
.

Now we have to determine the moles of
.
From the balanced chemical reaction we conclude that,
As, 8 moles of
produced from 1 mole of 
So, 0.569 moles of
produced from
mole of 
Now we have to determine the mass of
.


Therefore, the mass of
required is 18.238 grams.