Angular acceleration = (change in angular speed) / (time for the change)
Change in angular speed = (ending speed) minus (starting speed)
Change in angular speed = (16 rad/s) - (zero) = 16 rad/s .
Angular acceleration = (16 rad/s) / (0.4 s)
(Average) angular acceleration = 40 rad/s²
Answer:
0.665
Explanation:
I did the work. Just plug everything in from the formula. Look at the lesson manual.
Fly in a straight line unless an outside force changes its course because i tried it once in a baseball game that my mommy rekt me in.
A. The sound will decrease in volume
Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j