Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
Answer:
The outside temperature is -45.8°C
Explanation:
When a gas keeps on constant its moles and its pressure, we can assume that volume will be increased or decreased as the T° (absolute T° in K).
V1 / T1 = V2 / T2
2.95L/298K = 2.25L / T2
(2.95L/298K ) . T2 = 2.25L
T2 = 2.25L . 298K / 2.95L
T2 = 227.2K
T°K - 273 = T°C
227.2K - 273 = -45.8°C
Answer:
For O: atomic number = 8 # neutrons = 8
For Al: atomic mass = 27, # electrons = 13
The sample of smoke described above can be described as a heterogeneous mixture. This type of mixture do not have uniform properties and composition. So, getting a certain small sample would not represent the whole mixture since it does not have uniform composition.
Um im pretty sure there are only about 100 different atoms...