Answer: Not 100% sure but I think it’s C.
Hope this helps! ^^
When she starts out, he is (40x2.5)= 100 miles ahead of her.
She gains (65-40)= 25 miles on him every hour.
It takes her (100/25)= 4 hours to catch up to him.
The magnitude of the induced emf is given by:
ℰ = |Δφ/Δt|
ℰ = emf, Δφ = change in magnetic flux, Δt = elapsed time
The magnetic field is perpendicular to the loop, so the magnetic flux φ is given by:
φ = BA
B = magnetic field strength, A = loop area
The area of the loop A is given by:
A = πr²
r = loop radius
Make a substitution:
φ = B2πr²
Since the strength of the magnetic field is changing while the radius of the loop isn't changing, the change in magnetic flux Δφ is given by:
Δφ = ΔB2πr²
ΔB = change in magnetic field strength
Make another substitution:
ℰ = |ΔB2πr²/Δt|
Given values:
ΔB = 0.20T - 0.40T = -0.20T, r = 0.50m, Δt = 2.5s
Plug in and solve for ℰ:
ℰ = |(-0.20)(2π)(0.50)²/2.5|
ℰ = 0.13V
Answer:
Option B
Explanation:
The fundamental quantities are the basic quantities from which other quantities are derived.
There are a total of 7 fundamental quantities, namely Length, Mass, Time, Luminous Intensity, Amount of substance, Electric Current, Temperature.
From these 7 quantities, the other quantities are derived.
Weight is the product of its mass and the gravitational acceleration 'g' which acts on that mass.
Where mass is the fundamental quantity and 'g' is also derived and hence weight is a derived quantity.